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1 Introduction
Multiphase flow involves the simultaneous movement of different phases, such as liquids,
gases, and solids, or immiscible fluids within a shared system. This phenomenon is funda-
mental and has significant implications across various industries and scientific fields. The
dynamics of multiphase flows can be observed in many real-world applications, including
oil and gas extraction, chemical processing, environmental science, nuclear reactor cooling,
and biomedical engineering. The behavior of these flows often determines the efficiency,
safety, and overall success of the processes involved, making it essential to understand and
accurately model their underlying mechanisms. The distinct physical properties of each
phase—such as density, viscosity, and compressibility—add complexity to multiphase flow
modeling, especially as these phases interact with one another at their interfaces. The
evolution of these interfaces is influenced by factors like surface tension, buoyancy forces,
shear stresses, and other interfacial phenomena. These interactions can result in intricate
behaviors, including droplet formation, bubble breakup, and particle aggregation. As a
result of these complexities, multiphase flows can exhibit a wide range of behaviors, from
stable stratified flows to highly chaotic and turbulent regimes. Therefore, effectively mod-
eling multiphase flows is not only a significant scientific challenge, but it is also crucial for
optimizing industrial applications, ensuring environmental safety, and advancing scientific
research. The diversity of flow regimes in gas-liquid systems is illustrated in Figure 1.1 ,
which shows the transition between different flow types as liquid and gas velocities vary.
Each regime represents a unique arrangement and interaction of the phases, highlighting
the complexity and richness of multiphase flow behavior.

Figure 1.1: Diversity of flow regimes in gas-liquid systems

One of the unique challenges in modeling multiphase flow lies in the diverse range of
flow regimes that can arise, depending on the relative velocities, properties, and orienta-



1 INTRODUCTION

tions of the phases involved. In gas-liquid flows, for instance, these regimes include bubbly,
slug, annular, stratified, and stratified wavy flows, each with distinct characteristics. Bub-
bly flow features dispersed gas bubbles within a continuous liquid phase, commonly seen
in low-velocity gas streams. As gas velocity increases, these bubbles can coalesce to form
larger gas slugs separated by liquid segments, leading to the slug flow regime. In annular
flow, typically observed at higher gas velocities, a continuous gas core is surrounded by
a thin liquid film. Stratified flow is characterized by a separated, layered arrangement
of gas and liquid phases, while stratified wavy flow occurs when surface waves form at
the interface due to higher relative velocities between the phases. These regimes are not
only visually distinctive but also impact pressure drop, flow stability, and heat and mass
transfer rates, which are critical factors in engineering design and operation.

In computational fluid dynamics (CFD), modeling multiphase flow is crucial for engi-
neers and scientists who seek to accurately simulate complex systems. Traditional single-
phase models often fall short in capturing the intricate interactions at phase boundaries
and the unique phenomena associated with multiphase systems. To effectively simulate
multiphase flows, specialized modeling techniques are necessary. These techniques must
accommodate the distinct characteristics of each phase, account for interactions between
phases, and manage the presence of phase interfaces. Recent research in this field has fo-
cused on developing robust, flexible, and computationally efficient multiphase flow models
that cater to the diverse needs of various applications, ranging from large-scale industrial
processes to microscale biological environments.

Key application areas in multiphase that includes precision spraying in industries like
printing and electronics, where controlling droplet breakup and deposition patterns is
essential. In paint atomization, high-frequency ultrasonic waves are used to break up
the liquid, enabling fine control over droplet size and distribution. In underwater and
ocean engineering, meshless methods excel in simulating wave interactions with float-
ing bodies, sloshing, wave breaking, and other violent water-air interfaces. For sediment
transport and oil spill simulations, capturing multiphase dynamics in irregularly shaped
domains. Additionally, phase change phenomena such as boiling and condensation, sup-
porting applications in cooling systems for microelectronics and thermal management in
energy storage. In metal casting and additive manufacturing, the solver simulates complex
processes involving fluid filling, droplet deposition, surface tension, and thermal effects.

One of the primary challenges in multiphase flow modeling is the accurate representa-
tion of phase interfaces. Capturing the movement, deformation, and interaction of phase
boundaries is critical for accurately predicting multiphase flow behavior. Traditional grid-
based methods often struggle to maintain sharp and stable interfaces, especially in systems
with high-density and high-viscosity contrasts. Methods like the Level Set and Volume
of Fluid techniques are commonly used for interface tracking, but they require complex
algorithms to maintain numerical stability and prevent interface smearing. In addition
to interface dynamics, surface tension forces play a significant role in multiphase flows,
particularly in microscale systems where interfacial forces dominate over inertial forces.
Surface tension affects behaviors such as droplet coalescence, breakup, and spreading,
which are critical in applications like inkjet printing, microfluidics, and fuel injection.
Accurate modeling of surface tension is challenging due to its highly localized nature,
requiring precise algorithms and fine spatial resolution to capture its effects. Dynamic
contact angles, which describe the interaction between fluid phases and solid surfaces,
add another layer of complexity to multiphase flow modeling. These angles vary with
flow conditions, influencing capillary-driven flows and the wettability of surfaces.
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1 INTRODUCTION

To address these challenges, recent advancements in computational methods and hard-
ware have enabled the development of more robust and efficient multiphase flow models.
GPU-accelerated solvers, for instance, offer significant computational speed-ups, making
it feasible to simulate high-resolution, large-scale multiphase flows. In this work, we aim
to develop a multiphase flow solver optimized for a range of complex applications, leverag-
ing meshless methods for flexibility and precision in dynamic, high-deformation scenarios.
Multiphase flows are crucial in various fields, from industrial processes to environmen-
tal and biomedical applications, etc. Our solver will model intricate phenomena such as
droplet formation, phase change, dynamic contact angle, surface tension, fluid interac-
tion and atomization supporting applications that demand accuracy in highly irregular
or deforming domains.

Meshless methods provide a robust framework for simulating a wide range of multi-
phase flow applications with high accuracy and adaptability. They excel in applications
such as oil extraction and transport, hydraulic fracturing, fuel cells, where they effec-
tively model phenomena such as bubble dynamics, surface tension, and phase separation.
Particularly suited for processes like hydrogen generation by accurately capturing bubble
dynamics and phase interfaces, storage and mobility of hydrogen, oil spilling in marine
environments, thermocapillary migration processes ensures precise heat transfer and con-
trolled fluid migration and spray coating or painting on automotive and aircraft surfaces.
In dip coating, where objects are dipped into a liquid to coat them, surface tension, fluid
deformation, and contact angle dynamics are essential to control coating thickness and
uniformity. This application is significant in industries such as automotive, electronics,
and consumer goods. Dip deformation analysis is one of the important applications in
automotive paint shop process which is connected with dip coating where multiphase flow
with FSI is involved. Complex physical processes are involved in gearbox oil distribution
simulation, e.g. violent multiphase flow, high-speed fluid structure interaction. Surface
tension and ultrasonic sound-driven fluid injection in space and micro gravity application.
The benefit of biofouling resistance comes from their capacity to manage fluid-solid in-
teractions and dynamic boundary conditions. Multiphase flow with surface tension and
dynamic contact angle play curial roles in many other applications like Digital micro flu-
ids, Emulsion, Electro hydro-dynamics and etc,.

This paper is organized as follows: Section 2 presents the theoretical background, covering
the governing equations, numerical methods, and key concepts such as surface tension,
dynamic contact angle, and fluid-structure interaction (FSI). Section 3 provides a detailed
literature review, discussing relevant studies on Lagrangian Differencing Dynamics (LDD),
multiphase modeling, surface tension, dynamic contact angles, and FSI. Section 4 out-
lines the conclusion and future work, summarizing the scope of this study and proposing
directions for future research.
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2 Theoretical Background

2.1 Governing Equations
The Navier-Stokes equations governing incompressible fluids are expressed as follows:

∇ · u = 0 (2.1)

Du
Dt

= −1

ρ
∇p+ ν∇2u + g +

1

ρ
Fs (2.2)

In these equations,

• D/Dt is a material derivative, also known as the convective or substantial derivative

• u represents the velocity field

• ρ is the fluid density

• p denotes the pressure

• ν is the kinematic viscosity

• g stands for acceleration due to gravity and

• Fs signifies the force due to surface tension per unit volume.

The continuity equation ∇ · u = 0 ensures the incompressibility of the fluid, indicating
that there are no sources or sinks within the fluid. The Momentum Equation (2.2) is
based on the Lagrangian perspective, accounts for pressure gradients, viscous diffusion,
gravitational forces, and surface tension forces. Du

Dt
describe how the velocity of a fluid

particle changes over time. For a velocity field u, the material derivative is:

Du
Dt

=
∂u
∂t

+ u · ∇u (2.3)

Where,

• ∂u/∂t is the local acceleration and

• u · ∇u is the convective acceleration.

Together, it describe the total acceleration of a fluid particle as it moves through the
velocity field in the Lagrangian context. Solving the Navier-Stokes Equation (2.2) for
incompressible flow involves determining both the pressure and velocity fields within a
discretized computational domain. The pressure field is typically computed using the
Pressure Poisson Equation (PPE) as below:

∇ ·
(
∇p

ρ

)
= −∇ ·Du/Dt (2.4)

The velocity field is typically computed as below:

Du
Dt

= −1

ρ
∇p+ ν∇2u + g +

1

ρ
Fs (2.5)
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2.2 Numerical Methods
2.2.1 One Equation Approach

The one equation approach models multiphase flows by treating the entire domain as a
single fluid, solving a single set of Navier-Stokes Equations (2.2). The differences in density
and viscosity across phases are incorporated through fluid properties that vary spatially,
defined as functions of a scalar field (e.g., volume fraction) [1, 2, 3, 4, 5]. Interface effects
like surface tension are included by adding terms in the momentum equations to account
for interfacial forces. This approach avoids explicitly tracking the interface, making it
computationally efficient for complex flows. It can capture the behavior of interfaces
in situations where phases do not separate sharply. Diffuse interfaces can arise, leading
to a loss of sharpness in representing phase boundaries, especially for high-density ratio
flows. Surface tension effects can be challenging to model accurately without a fine grid
resolution in gird based methods. However, this can be easily adapted for the Lagrangian
methods [6, 7]. Representation of the domain to solve the NS is shown in Figure 2.1

Figure 2.1: Representation of the domain to solve the NS for Multiphase flow. One
equation Method (Left), Separate Equation for each phase is called Multi Equation (center),
Ghost or sharp interface using ghost particles

2.2.2 Multi Equation Approach

For each phase, separate Navier-Stokes Equations (2.2) are solved, and conditions at the
interface are applied to maintain continuity between two phases as below:

[u1 − u2] = 0 at the interface. (2.6)

Where,

• u1 is phase one velocity

• u2 is phase two velocity

9



2 THEORETICAL BACKGROUND

It is best suited for cases where interfaces experience mild deformation. This method cap-
tures sharp interfaces precisely, providing high accuracy in phase boundary representation.
Interface dynamics, including surface tension and phase changes, can be directly applied
with continuity and boundary conditions [8, 9, 10, 11]. In Eulerian-based methods, It is
achieved using body grid methods as shown in Figure 2.1

2.2.3 Ghost Fluid Method or Sharp Interface Methods

Sharp-interface methods, such as the Ghost Fluid Method (GFM), represent the interface
between phases on a structured grid and use “ghost nodes” to capture discontinuities
across the interface in the Eulerian method. These ghost nodes allow the method to
interpolate values across the interface, avoiding the need for re-meshing while retaining
a sharp interface. In Lagrangian methods, ghost particles are created by projection with
respect to interface and compact radius. These methods solve the Navier-Stokes Equations
(2.2) separately in each phase but include ghost nodes as shown in Figure 2.1, across the
interface to handle discontinuities with ghost node values enforcing jump conditions [12,
13, 14, 15, 16, 17]. [

ρ
∂u
∂t

]
across interface

= −∇p+ surface tension terms, (2.7)

2.3 Classification of Multiphase Modeling Techniques
Multiphase flow modeling encompasses various approaches, each tailored to specific ap-
plications and physical phenomena. The classification of these techniques can be broadly
categorized into three primary groups: Molecular Modeling, Macroscopic Modeling, and
Mesoscopic Modeling. Each category employs different methodologies and computational
strategies to capture the complexities of multiphase interactions. Figure 2.2 presents a
multiscale approach for modeling fluids across different time and length scales. At the
smallest, quantum scale, atomic-level interactions are studied, focusing on electronic con-
figurations. Moving up, the molecular scale models individual molecules and their dynam-
ics, while the mesoscale groups collections of molecules, often using simplified methods to
capture collective behavior like diffusion. At the largest, continuum scale, fluid properties
are represented as averaged quantities (e.g., density, viscosity, and thermal conductivity),
allowing for efficient modeling of large-scale fluid behavior. This framework enables se-
lecting appropriate modeling techniques based on the scale of interest. Complete overview
of multiphase modelling is shown in Figure 2.3

10



2 THEORETICAL BACKGROUND

Figure 2.2: Multiscale Modeling Framework for Fluid Systems [18]

2.3.1 Molecular Modeling

Molecular modeling techniques focus on the fundamental interactions between molecules
and are particularly useful for understanding phenomena at the nanoscale. This helps in
understanding processes like diffusion, wetting, and nanoscale fluid behavior in pores.

Molecular Dynamics (MD): This method simulates the physical movements of
atoms and molecules over time, providing insights into the properties of materials and
interactions at the molecular level. However, MD is computationally intensive and not
suitable for large-scale systems.

2.3.2 Mesoscopic Modeling

Mesoscopic modeling bridges the gap between molecular and macroscopic approaches,
capturing essential features of multiphase flows without resorting to molecular details.

Dissipative Particle Dynamics (DPD): Describe DPD as a particle-based simu-
lation technique that models interactions in a way that incorporates some macroscopic
properties, allowing for the simulation of complex fluid behavior without resolving ev-
ery molecular detail. DPD is useful for simulating soft matter and complex fluids. It is
commonly applied in polymer science and biological simulations.

Lattice Boltzmann Method (LBM): A numerical approach based on kinetic the-
ory that simulates fluid dynamics at the mesoscopic scale, effectively capturing complex
boundary conditions and interface dynamics. LBM is widely used in porous media, mul-
tiphase interactions, and microfluidics

11
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Figure 2.3: A detailed overview of Multiphase Modelling and Methods
12



2 THEORETICAL BACKGROUND

2.3.3 Macroscopic Modeling

Macroscopic approach, which treats multiphase flows as continuous fields governed by
partial differential equations. These models work at scales where continuum assumptions
hold, allowing the phases to be treated as continuous, interpenetrating media. Macro-
scopic models are used extensively in industrial and environmental simulations, where
large-scale flows and bulk properties are more important than individual particle interac-
tions. It is widely classified as Mesh methods and Meshless methods.

Mesh Methods: Mesh or Grid based methods are numerical techniques employed to
solve Partial Differential Equations (PDEs) by discretizing the continuous domain into a
grid or mesh of points or cells as shown in Figure 2.4 . This discretization facilitates the
approximation of continuous variables at specific locations, transforming the governing
equations into a set of algebraic equations that can be solved numerically. By utilizing
appropriate numerical schemes, the derivatives in the equations are estimated based on
the values of neighboring grid points. These methods are versatile and adaptable, mak-
ing them suitable for a wide array of applications in fluid dynamics, heat transfer, and
structural analysis. Accurate specification of boundary and initial conditions is critical,
as these significantly influence the solution. Overall, grid-based methods provide a sys-
tematic and efficient approach to analyzing complex physical phenomena across various
scientific and engineering fields.

Figure 2.4: Representation of domain with mesh or grid for the mesh-based method

Finite Volume Method (FVM): The Finite Volume Method (FVM) is a robust nu-
merical technique widely used to approximate solutions to partial differential equations,
particularly in computational fluid dynamics (CFD) and heat transfer problems. This
method divides the spatial domain of interest into small, discrete control volumes, each
centered around a grid point. Within each control volume, integral conservation laws are
applied for fundamental quantities such as mass, momentum, and energy. This frame-
work ensures that the flux of a conserved quantity across the boundaries of each control
volume is balanced, thereby upholding the physical principles of conservation throughout
the simulation. In FVM, differential equations are transformed into algebraic equations
by integrating over each control volume, simplifying complex partial differential equa-

13
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tions that can then be solved iteratively. The adaptability of FVM allows it to manage
irregular, non-uniform meshes and boundary conditions, which often arise in real-world
applications. Its conservative nature makes it particularly effective for simulating flows
with high accuracy across boundaries, even in complex geometries. The combination of
flexibility, accuracy, and adherence to conservation principles positions the FVM as a
preferred choice in engineering and scientific applications, where precise modeling of fluid
flow, thermal transfer, and other transport phenomena is essential.

Finite Difference Method (FDM): The Finite Difference Method (FDM) is a
numerical technique utilized to solve differential equations by approximating them with
difference equations. This method is particularly beneficial for analyzing problems in
computational fluid dynamics, heat conduction, and other domains governed by partial
differential equations. FDM operates by discretizing the continuous domain into a grid,
where derivatives are substituted with finite differences, enabling the transformation of
differential equations into algebraic equations. In FDM, continuous variables are repre-
sented at discrete grid points, and the derivatives at these points are approximated using
Taylor series expansions or simple difference formulas. For example, the first derivative
can be approximated by the forward or backward difference, while higher-order deriva-
tives may be represented using central differences. This results in a system of equations
that can be solved iteratively or directly, contingent on the problem’s complexity. One of
the primary advantages of FDM is it’s straightforward implementation and ease of use,
especially for problems defined on structured grids. However, challenges may arise when
dealing with complex geometries and irregular domains, where maintaining accuracy can
be difficult. Despite these limitations, FDM remains a widely adopted approach due to its
effectiveness in addressing time-dependent problems, offering good accuracy for smooth
solutions, and providing a clear framework for both steady-state and transient analyses.
It’s versatility and relative simplicity render it a valuable tool in engineering and scientific
research for modeling various physical phenomena.

Finite Element Method (FEM): The Finite Element Method (FEM) is a pow-
erful numerical technique extensively employed in computational fluid dynamics (CFD)
for solving complex partial differential equations that characterize fluid flow, heat trans-
fer, and other physical phenomena. Unlike methods that utilize structured grids, FEM
divides the computational domain into a mesh of small, simple shapes called elements,
which can take various geometries (e.g., triangles or quadrilaterals in two dimensions, or
tetrahedra or hexahedra in three dimensions). This flexibility enables FEM to effectively
tackle complex geometries and boundary conditions frequently encountered in engineering
applications. In FEM, governing differential equations are transformed into a weak for-
mulation through the application of variational principles. Each element is assigned a set
of shape functions that approximate the solution within that element. By integrating the
governing equations over each element and applying the relevant boundary conditions,
a system of algebraic equations is derived. These equations are then assembled into a
global system representing the entire computational domain. The solution is obtained
using numerical techniques, such as the Newton-Raphson method or iterative solvers, to
resolve the resulting system of equations. A significant advantage of FEM in CFD is,
it’s capability to accurately model complex flow phenomena, including turbulence, phase
interactions, and fluid-structure interactions. The method’s adaptability to varying mesh
densities allows for localized refinement, where a greater number of elements are uti-
lized in regions with high gradients or complexity, thereby enhancing solution accuracy.
Moreover, FEM is particularly well-suited for problems involving nonlinear behavior and

14
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transient dynamics, making it a popular choice for simulating real-world fluid dynamics
scenarios in fields such as aerospace, automotive, and biomedical engineering. It’s ro-
bustness, flexibility, and accuracy position the FEM as a critical tool in the analysis and
design of fluid systems.

Boundary Element Method (BEM): The Boundary Element Method (BEM) is
a numerical technique employed to solve partial differential equations relevant to various
engineering and physical applications, especially in fluid dynamics, heat transfer, and
structural analysis. Unlike traditional methods that require full discretization of the en-
tire volume of the domain, BEM focuses on the boundaries of the domain, significantly
reducing the problem’s dimensionality. This approach proves particularly efficient for
problems involving infinite or semi-infinite domains, such as potential flow around objects
or heat conduction in semi-infinite media. In BEM, the governing equations are reformu-
lated in terms of boundary integrals, utilizing the boundary conditions of the problem to
express the solution. The domain is divided into boundary elements, with the unknowns
typically represented by interpolating functions over these boundaries. By applying in-
tegral equations derived from the governing differential equations, a system of equations
is generated that correlates the unknown boundary values to the known boundary con-
ditions. Solving this system yields the values at the boundaries, from which the solution
in the entire domain can be reconstructed. A primary advantage of BEM is its capacity
to accurately model problems with complex geometries and boundary conditions without
requiring a dense mesh throughout the entire domain. Consequently, this results in fewer
degrees of freedom compared to volume-based methods like FEM or FVM, thereby reduc-
ing computational cost and time. BEM is particularly effective for steady-state problems
and those involving linear differential equations. However, it may be less efficient for
nonlinear problems and may necessitate special handling for non-homogeneous boundary
conditions.

Immersed Boundary Method (IBM):The Immersed Boundary Method (IBM) is
a numerical technique utilized to simulate fluid flow in the presence of complex, mov-
ing geometries. This method is particularly advantageous in CFD for scenarios involving
fluid-structure interactions, such as biological systems (e.g., blood flow around heart valves
or fish swimming) and engineering applications (e.g., flow over airfoils or the motion of
flexible structures). In IBM, the fluid domain is typically represented on a fixed Cartesian
grid, while the solid boundaries are immersed within this grid. The fundamental concept
is to impose the effects of the immersed boundaries on the surrounding fluid flow without
conforming the grid to the shape of the object. This is achieved by employing special
forcing terms in the Navier-Stokes equations that represent the boundary conditions at
the interface between the fluid and the solid. Consequently, the immersed boundaries
exert forces on the fluid, which are incorporated into the governing equations, enabling
effective interaction between the fluid and the boundaries. A notable advantage of the
Immersed Boundary Method is its capability to manage complex geometries and moving
interfaces without the computational overhead associated with mesh generation and re-
finement, common in traditional methods like the FEM or FVM. In addition, IBM can
easily accommodate substantial boundary deformations, making it suitable for simulating
flexible structures and dynamic interactions. However, the accuracy of the method can be
influenced by the choice of forcing functions and the grid resolution, particularly near the
boundaries. Therefore, careful consideration of grid size and numerical scheme is essential
to ensure accurate capture of interactions between the fluid and immersed boundaries.

15



2 THEORETICAL BACKGROUND

Meshless Methods: Meshless methods represent a class of numerical techniques uti-
lized to solve Partial Differential Equations (PDEs) without relying on a predefined grid
or mesh as shown in Figure 2.5 . This allows for greater flexibility in handling complex
geometries and dynamic problems. Instead of discretizing the domain, meshless methods
utilize a set of scattered points within the computational domain to represent the solution.
They approximate the governing equations by constructing local or global shape functions
based on the values at neighboring points, enabling the computation of derivatives and
integrals directly from the scattered data. This approach is particularly beneficial for
problems involving large deformations, moving boundaries, or evolving interfaces, as it
mitigates issues related to mesh generation and refinement. Meshless methods are in-
creasingly employed in various fields, including fluid dynamics, structural analysis, and
material science, offering a powerful alternative to traditional mesh-based techniques for
simulating complex physical phenomena. A detailed summary is provided in Table 2.1.

Figure 2.5: Representation of domain with particles or points for the meshless method

Smoothed Particle Hydrodynamics (SPH): SPH is a meshless, Lagrangian nu-
merical method employed to simulate fluid flows and various continuum mechanics phe-
nomena. Initially developed for astrophysical applications, SPH has gained prominence
in diverse fields such as fluid dynamics, geophysics, and biomechanics due to its capability
to effectively handle complex fluid interfaces and free surfaces. In SPH, the fluid is rep-
resented by a discrete set of particles, each possessing properties such as mass, position,
velocity, and other relevant physical characteristics. The interactions between particles
are governed by a kernel function that calculates the influence of neighboring particles.
This smoothing approach enables the approximation of continuous fields, including den-
sity and pressure, without the necessity of a fixed grid. A primary advantage of SPH lies
in its flexibility to manage large deformations, free-surface flows, and complex boundary
conditions, rendering it well-suited for simulating phenomena such as fluid fragmentation,
mixing, and solid-fluid interactions. Moreover, the absence of a mesh alleviates complica-
tions associated with mesh generation and refinement, particularly in dynamic simulations
where the fluid domain may undergo significant alterations over time. Nonetheless, SPH is
not without challenges, particularly concerning numerical stability. Maintaining accuracy
during high-velocity impacts or in scenarios with strong gradients can be problematic. To
address these issues and enhance the method’s performance, various enhancements have
been proposed, including kernel corrections and multi-resolution techniques.
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Moving Particle Semi-Implicit (MPS): The MPS method is a numerical approach
employed for simulating fluid flows and dynamic phenomena, with particular emphasis on
free-surface flows and fluid-structure interactions. As a meshless Lagrangian technique,
MPS does not rely on a fixed grid or mesh, providing enhanced flexibility in managing
complex geometries and large deformations. In the MPS framework, fluid is represented
by a collection of moving particles, each characterized by properties such as mass, posi-
tion, velocity, and density. The interactions among these particles are computed utilizing
a semi-implicit scheme that improves numerical stability. This method integrates explicit
and implicit time-stepping techniques to solve the governing equations of fluid motion,
allowing for effective management of stability during time integration—particularly ben-
eficial when employing large time steps in dynamic simulations. A notable advantage
of MPS is its efficacy in modeling free-surface flows, making it suitable for applications
such as dam break simulations, sloshing in tanks, and other scenarios involving fluid
motion and interfaces. Furthermore, the method can accommodate complex boundary
conditions and moving objects with relative ease, a significant advantage over traditional
mesh-based methods. Despite its merits, MPS faces limitations concerning particle dis-
tribution and potential numerical instability under certain conditions. Ongoing research
seeks to enhance the robustness of the method through optimized particle arrangements
and correction schemes aimed at improving accuracy.

Generalized Finite Difference Method (GFDM): GFDM utilizing meshless in-
terpolation combine the advantages of finite difference techniques with the flexibility of
meshless approaches for solving partial differential equations. In this framework, tradi-
tional finite difference schemes are generalized to accommodate irregular point distribu-
tions, allowing for more accurate derivative approximations without a fixed grid. Meshless
interpolation techniques, such as Moving Least Squares (MLS) or radial basis functions,
are employed to estimate field variables at non-grid points, enhancing the method’s adapt-
ability to complex geometries and boundary conditions. This approach proves particu-
larly beneficial for simulating problems characterized by evolving interfaces or irregular
domains, providing a robust and flexible tool applicable across a diverse range of fields,
including fluid dynamics, heat transfer, and material science.

Finite Pointset Method (FPM): The FPM is a meshless numerical technique
utilized for solving partial differential equations by representing the domain with a discrete
set of points. In contrast to traditional mesh-based methods, FPM does not rely on a
predefined mesh, allowing for enhanced flexibility in addressing complex geometries and
dynamic interfaces. Within the FPM framework, the governing equations are solved
by approximating field variables at pointset locations using local polynomial or radial
basis function interpolations. The method incorporates a background grid to facilitate
derivative integration and enforce boundary conditions. FPM is particularly well-suited
for scenarios involving large deformations, fluid-structure interactions, and free-surface
flows, establishing it as a valuable tool in engineering and scientific research for simulating
intricate physical phenomena without the complications associated with mesh generation
and refinement.
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Feature SPH MPS GFDM FPM
Basic Concept Interpolates

physical
quantities using
smoothing
kernels

Solves NS
equations with
semi-implicit
formulations

Approximates
derivatives
using weighted
least squares

Uses Taylor
expansions for
point cloud data

Domain Rep-
resentation

Lagrangian
particles

Lagrangian
particles

Arbitrary point
clouds (no
connectivity)

Arbitrary point
clouds (no
connectivity)

Conservation
Properties

Good mass
conservation,
challenges in
momentum and
energy

Good mass
conservation,
handles pressure
better than
SPH

Conservation
depends on
weighting
functions

Conservation
depends on
Taylor series
accuracy

Handling of
Boundaries

Requires special
techniques
(ghost particles,
kernel
corrections)

Requires special
boundary
particles

Requires
explicit
boundary
conditions

Handles
boundaries with
high flexibility

Numerical
Diffusion

Moderate
(depends on
kernel and
radius)

Low (better
pressure
calculations)

Depends on
weighting
schemes

Low (accurate
derivative
computation)

Accuracy Moderate,
sensitive to
kernel choice
and particle
distribution

Moderate to
high

High, flexible
accuracy with
higher-order
derivatives

High, flexible
accuracy for
well-distributed
points

Computa-
tional Cost

Moderate to
high

Moderate to
high

High (matrix
assembly for
weights)

High (matrix
operations for
Taylor
expansions)

Grid
Flexibility

Fully meshless,
ideal for
free-surface
flows

Fully meshless,
ideal for
incompressible
flows

Fully meshless,
suitable for
arbitrary
geometries

Fully meshless,
suitable for
arbitrary
geometries

Applications Free-surface
flows,
astrophysics
simulations

Incompressible
flows,
multiphase
flows

General CFD,
heat transfer,
elasticity

General CFD,
aeroacoustics,
multiphysics

Advantages Handles large
deformations
and free
surfaces

Stable pressure
and
incompressible
flows

High flexibility
and accuracy
for arbitrary
geometries

High flexibility
and accuracy
for arbitrary
geometries

Disadvantages Sensitive to
particle
distribution,
kernel choice

High
computational
cost for large
systems

High
computational
cost, complex
weighting
schemes

High
computational
cost, complex
setup for Taylor
expansions

Table 2.1: Summary of meshless methods
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2.3.4 Interface Tracking Methods for Grid Based Method

In grid-based methods for multiphase flow simulation, accurately tracking the interface
between different phases is essential for capturing interfacial dynamics and phase inter-
actions. The interface represents the boundary where properties like density, viscosity,
and surface tension can vary sharply, and its accurate tracking is crucial to avoid artifi-
cial mixing and ensure realistic simulations. Several approaches are employed as shown
in Figure 2.6 to handle this challenge, each with unique strengths and limitations. A
detailed summary is provided in Table 2.2.

Figure 2.6: Interface tracking methods for gird based methods. Phase field: Diffuse
(controlled by interface width), VOF: Diffuse (over a few cells), Level set: Sharp, but
smeared numerically, Marker and cell: Diffuse using markers and Front tracking: Sharp
interface using Lagrangian particle

Phase-Field Method: The Phase-Field method is an simple approach for capturing
the interface, which models it as a diffuse region rather than a sharp boundary. This
is achieved by introducing an order parameter (or phase field) that varies continuously
across the interface, transitioning smoothly between values representing each phase. The
evolution of this phase field is governed by the Cahn-Hilliard equation, which helps to
model the motion and dynamics of the interface. The diffuse nature of the phase-field
method makes it especially useful for simulations where the interface undergoes complex
topological changes, such as merging or splitting, without requiring any special handling.
However, one of the main limitations of the phase-field method is controlling the interface
thickness, which can require fine grids to achieve high accuracy, increasing computational
costs.
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Volume of Fluid (VOF) Method: The Volume of Fluid (VOF) method is widely
used in grid-based CFD simulations for tracking interfaces in multiphase flows. It repre-
sents the interface by defining a volume fraction field in each computational cell, which
indicates the fraction of the cell occupied by a given phase. This volume fraction is a
scalar value between 0 and 1, with intermediate values indicating the presence of the
interface within the cell. To represent the interface shape more accurately, reconstruction
techniques like Piecewise Linear Interface Calculation (PLIC) can be used to approximate
the geometry of the interface. The VOF method is particularly effective for cases with
large interfacial deformations, such as splashing or droplet breakup, and ensures mass
conservation across the interface. However, a major challenge with VOF is that the in-
terface can become smeared over multiple cells, especially in high-resolution cases, which
can reduce the sharpness and accuracy of the captured interface.

Level Set Method: The Level Set method is a versatile technique for capturing
interfaces in multiphase flows. It uses a signed distance function, where the value of the
function represents the shortest distance to the interface, with positive values on one side
and negative values on the other. The interface itself is the zero level set of this func-
tion. This implicit representation makes it easy to handle complex interfacial dynamics,
including topological changes like merging and breaking. The Level Set function evolves
over time to reflect the motion of the interface, using the level set equation. While this
method provides a sharp, smooth interface, it can suffer from numerical inaccuracies due
to the need for reinitializing the level set function periodically, which can introduce slight
errors in the interface position.

Front-Tracking Method: The front-tracking method explicitly tracks the interface
by using a separate set of markers or an independent mesh, typically represented as a
collection of points or segments that define the interface boundary. These markers move
along with the fluid velocity and are coupled with the Eulerian grid used for the fluid
flow. This method maintains a highly accurate, sharp interface, making it especially use-
ful for simulations involving surface tension and fine-scale interfacial details. However,
the front-tracking method is computationally intensive, as it requires managing the inter-
face markers separately and addressing complex topological changes, such as merging or
breakup events. Despite these challenges, the front-tracking method is often chosen when
a precise interface representation is needed for detailed interfacial phenomena.

Marker-and-Cell (MAC) Method: The Marker-and-Cell (MAC) method is an
interface tracking technique that employs marker particles to distinguish different fluid
regions and locate the interface. These particles are advected with the flow, marking
the regions occupied by each phase, which helps in maintaining a sharp interface. The
particle information is coupled with a grid-based solver that calculates fluid properties
across the domain. The MAC method is particularly suitable for simulating free-surface
flows, as it naturally captures the dynamic interface between the phases. However, it can
be computationally demanding since it requires a high density of marker particles near the
interface to maintain accuracy, which increases the computational load for high-resolution
simulations.
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Feature Front
Tracking

Marker-
and-Cell
(MAC)

Phase-
Field
Method

Volume of
Fluid
(VOF)

Level Set
Method

Interface
Represen-
tation

Explicit
(Lagrangian
markers)

Implicit
(tracer
particles)

Implicit
(Cahn-
Hilliard
equation)

Implicit
(volume
fraction)

Implicit
(distance
function)

Interface
Sharpness

Sharp, well-
maintained

Diffuse Diffuse
(controlled
by interface
width)

Diffuse (over
a few cells)

Sharp, but
smeared
numerically

Grid Setup Eulerian +
Lagrangian
mesh

Eulerian
(staggered
grid)

Eulerian
(uniform
grid)

Eulerian
(uniform
grid)

Eulerian
(uniform
grid)

Handling
of Surface
Tension

Accurate Less
accurate

Accurate
(surface
tension in
free energy)

Less
accurate
(special
techniques
required)

Accurate
(gradient-
based)

Numerical
Diffusion

Minimal at
interface

Higher at
interface

Controlled
by interface
width

Moderate
(depends on
advection
scheme)

Moderate
(depends on
reinitializa-
tion)

Complex
Interface
Topology

Challenging
(merg-
ing/split-
ting)

Challenging Easy
(naturally
handled by
diffuse
interface)

Easy
(automatic
via volume
fractions)

Easy
(automatic
via level set
evolution)

Mass Con-
servation

Good Good Poor (not
strictly
conserved)

Excellent
(strictly
conserved)

Poor (not
strictly
conserved)

Computa-
tional Cost

Moderate Low High
(additional
equations)

Moderate High
(additional
equations)

Physical
Basis

Explicit
tracking via
markers

Particle-
based
advection

Thermody-
namic free
energy

Volume
fraction
advection

Distance
function
advection

Applica-
tions

Sharp
interface
flows, high
surface
tension
effects

General in-
compressible
flows

Multiphase
flows with
diffuse
interfaces

Multiphase
flows with
strict mass
conservation

Multiphase
flows
requiring
sharp
interfaces

Table 2.2: Detailed summary of interface tracking methods for gird based methods. Phase
field: Diffuse (controlled by interface width), VOF: Diffuse (over a few cells), Level
set: Sharp, but smeared numerically, Marker and cell: Diffuse using markers and Front
tracking: Sharp interface using Lagrangian particle
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2.4 Surface Tension
Surface tension is a phenomenon that occurs at the interface between two phases, such
as water and air as shown in Figure 2.7. It is the result of cohesive forces between liquid
molecules, which cause the liquid surface to behave as if it were covered with a stretched
elastic membrane. In the case of water, this tension is especially strong due to hydrogen
bonding among water molecules. Water molecules in the bulk of the liquid are surrounded
by other water molecules and experience attractive forces from all directions. However,
molecules at the surface lack neighboring molecules in the air above. Consequently, these
surface molecules experience a net inward pull due to cohesive forces from molecules
within the liquid. This imbalance of forces causes the surface to contract, minimizing the
surface area and creating a state of tension at the boundary. This tension manifests as
surface tension, measured in units of force per unit length (e.g., N/m).

Figure 2.7: Representation of surface tension on liquid - air system.

Surface tension plays a critical role in multiphase flows, affecting phenomena such as
droplet formation, interface stability, and capillary waves. Surface tension originates at
the molecular level. However, the surface tension (Fs) is a macroscopic parameter. An
interface seeks to minimize its surface energy:

Surface energy = Fs × Area (2.8)
Then surface tension is surface energy per unit area. It is also termed as force exerted

at the interface per unit length. Several methods have been developed in CFD to model
surface tension forces accurately. The most common methods are presented in below
sections.

2.4.1 Continuum Surface Force (CSF)

The CSF method, developed by Brackbill et al. [19]. The CSF model represents surface
tension effects in fluid dynamics by modeling the surface tension as a body force acting
on the fluid. The force per unit volume due to surface tension is given by:

Fs = σκn (2.9)
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Where,

• σ is the surface tension coefficient

• n is the unit normal vector to the interface and

• κ is the local curvature

The curvature κ can be calculated using the gradients of the phase indicator function φ,
which defines the interface between phases:

κ = ∇ · n (2.10)

In practice, the CSF approach requires a method for determining the normal vector and
curvature, often derived from the level-set function or a phase-field representation.

2.4.2 Smoothed Continuum Surface Force (Smoothed CSF)

The Smoothed CSF method is a modification of the standard CSF approach, aimed at
improving numerical stability and interface capturing by smoothing the representation of
the interface. In the Smoothed CSF, the surface tension force is computed over a region
surrounding the interface rather than at the interface itself. The force is smoothed by
employing a weighting function or kernel function W (r):

Fs =

∫
Ω

σκnW (r − r′) dr′ (2.11)

Where,

• Ω is the domain around the interface and

• W (r − r′) is a smoothing kernel.

• r is distance vector of the neighbour point

• r′ is distance vector of the center point

This method allows for a more gradual transition in properties across the interface, re-
ducing numerical oscillations and improving overall simulation stability.

2.4.3 Sharp Surface Force (SSF)

The Sharp Surface Force (SSF) approach focuses on accurately capturing the effects of
surface tension without smoothing the interface. It is often used in simulations where
maintaining a sharp interface is critical. In SSF, the surface tension force is applied
directly at the interface, defined by a sharp indicator function φ that takes a value of 1
in one phase and 0 in the other. The force per unit volume is expressed as:

Fs = σκδ(φ)∇φ (2.12)

Where, δ(φ) is the Dirac delta function, ensuring that the surface tension is only applied
at the interface. The force can also be represented using a Heaviside function H(φ) that
distinguishes between the phases:

Fs = σκ∇H (2.13)
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2.5 Dynamic Contact Angle (DCA)
The contact angle is formed at the three-phase boundary where a liquid intersects with
both a solid and a gas. It serves as a key measure of how well, or how poorly, a liquid will
spread over a surface. For instance, in the formulation of coatings, inks, and paints, the
contact angle provides a useful indication of how modifications to these materials might
affect their spreading behavior. This measurement is critical not only for assessing the
performance of the product but also for determining the success of the application process.
The contact angle, typically denoted as θ, expresses the interaction between a liquid and
a solid surface. For example, a liquid droplet on a solid surface creates an interface, and
the contact angle formed at this interface provides insight into the degree of interaction
between the two phases, as shown in Figure 2.8. The liquid’s interaction with the solid

Figure 2.8: Represention of contact angle at the three phase boundary point

surface can be classified broadly into two categories:

1. Non-wetting: The contact angle is close to 180◦, meaning the liquid tends to stay
in droplet form and does not spread across the surface.

2. Wetting: The contact angle is close to 0◦, meaning the liquid spreads completely
over the surface, a phenomenon referred to as ”perfect” or ”complete” wetting.

Wettability is inversely proportional to the contact angle: the lower the contact angle, the
higher the wettability. For most real-world cases, the contact angle lies between 0◦ and
180◦. When θ = 90◦, the situation is neither fully wetting nor non-wetting. A contact
angle less than 90◦ indicates wetting behavior, while an angle greater than 90◦ suggests
non-wetting behavior. Based on contact angle measurements, surfaces can be classified
into the following categories and shown in Figure 2.9:
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Figure 2.9: Classification of Surface and Wettability nature with respect to contact angle

1. Hydrophilic: Contact angle < 90◦

2. Hydrophobic: Contact angle > 90◦

3. Superhydrophobic: Contact angle > 150◦

The size of the contact angle depends on the physical properties of the materials
involved, including surface tension. A droplet’s spherical shape is influenced not only by
the nature of the surface but also by the surface tension of the liquid. Surface tension
causes liquids, such as water, to form spherical droplets. This phenomenon occurs because
particles within the liquid are attracted to each other, creating a force known as cohesion.
When particles are surrounded by others of the same kind, the net force on each is
zero. However, at the liquid’s surface, there are no particles above to balance the forces,
resulting in a net inward and downward pull. This creates a high-energy state at the
surface, which drives the liquid into a spherical shape to minimize surface area—this is
the essence of surface tension. Liquids with high surface tension tend to form larger
contact angles and remain in droplet form, while those with low surface tension will
exhibit smaller contact angles and spread more easily over solid surfaces. This can be
summarized as follows:

1. Non-wettability: High surface tension leads to a large contact angle.

2. Wettability: Low surface tension results in a small contact angle.

Contact angle theory is rooted in surface tension, as described by the Young-Laplace
equation. This equation calculates the contact angle by balancing the surface energies at
the liquid-solid-gas interface

γsg = γsl + γlg cos θ

Where,

• θ is the contact angle,

• γsg is the solid-gas surface energy,

• γsl is the solid-liquid surface tension and

• γlg is the liquid-gas surface tension.
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The properties of the solid surface play a crucial role in determining wettability. When
the droplet is in equilibrium, the forces acting on it are balanced. The contact angle can
then be expressed as:

cos θ =
γsg − γsl

γlg

This equation shows how surface energies influence the contact angle:

1. If γsg < γsl, then cos θ will be negative, resulting in θ < 90◦, indicating a wetting
condition.

2. If γsg > γsl, then cos θ will be positive, resulting in θ > 90◦, indicating a non-wetting
condition.

Various methods have been developed in computational fluid dynamics (CFD) to model
the dynamic contact angle. The most common approaches are presented in the sections
below.

2.5.1 Kistler’s Model

Kistler’s model [20] describes the advancing contact angle (θA) as a function of the capil-
lary number (Ca) and the equilibrium contact angle (θE), based on Hoffman’s empirical
function [21]:

θA = fH
(
Ca+ f−1

H (θE)
)

(2.14)

Where,

• θA is the advancing contact angle

• Ca is the capillary number

• θE is the equilibrium contact angle and

• fH(x) is Hoffman’s function

Hoffman’s function, fH(x), is defined as:

fH(x) = arccos

(
1− 2 tanh

(
5.16

(
x

1 + 1.31x0.99

)0.706
))

(2.15)

This model is commonly used to predict advancing contact angles but requires additional
treatment for receding angles, which can be handled by coupling with another model.

2.5.2 Dynamic Receding Contact Angle Model

Nichita et al. [22] extended Tanner’s empirical work to formulate a model for receding
angles. This model relates the dynamic receding contact angle (θD) with the capillary
number:

θD =
(
θ3R − 72Ca

)1/3 (2.16)

Where, θR is the static receding contact angle. This approach is useful for simulations
where receding angle dynamics are significant.
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2.5.3 Shikhmurzaev’s Model

Shikhmurzaev [23] proposed a model that links the DCA with the contact line velocity
(ucl) and phenomenological constants:

cos(θD) = cos(θA)−
2u(a1 + a2u0)

(1− a2) ((a1 + u2
cl)

1/2 + ucl)
(2.17)

Where, u0 is radial velocity, a1, a2, and other parameters are fitted values specific to the
fluid interface being studied. This model provides flexibility for applications involving
varied wettability conditions.

2.5.4 Cox’s Model

Cox’s model [24] calculates both advancing and receding contact angles by incorporating
the apparent contact angle (θapp), the capillary number, apparent length (L) and the slip
length (λ):

θD = g−1

(
g(θapp) + Ca log

(
L

λ

))
(2.18)

Where, g(θ) is an integral function given by:

g(θ) =

∫ θ

0

x− sin(x) cos(x)
2 sin(x)

dx (2.19)

This model is especially useful when simulations require accurate handling of slip effects
at the contact line.

2.5.5 Quasi-Dynamic Contact Angle Model

The quasi-dynamic model, as discussed by Göhl et al. [25], simplifies the contact angle
behavior by setting a constant advancing angle (θA) and receding angle (θR) depending
on the contact line motion direction:

θD =

{
θA if advancing
θR if receding

(2.20)

This model is computationally efficient and applicable where experimental data for contact
angle hysteresis is available, though it may lack the accuracy of more detailed models.

2.5.6 Yokoi’s Model

The dynamic contact angle is modeled as a function of the contact line velocity ucl and
Tanner’s law [22], combining capillary-dominated and inertia-dominated regimes[26]:

θ(ucl) =


min

(
θE +

(
Ca
ka

)1/3
, θmda

)
, if ucl ≥ 0 (Advancing phase),

max
(
θE +

(
Ca
kr

)1/3
, θmdr

)
, if ucl < 0 (Receding phase),

(2.21)

Where:
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• θ(ucl): Dynamic contact angle as a function of the contact line velocity ucl.

• Ca: Capillary number, defined as:

Ca =
µucl

σ
,

Where, µ is the liquid dynamic viscosity, ucl is the contact line velocity, and σ is
the surface tension.

• θE: Equilibrium contact angle at zero velocity (Ca = 0).

• θmda: Maximum dynamic advancing angle.

• θmdr: Minimum dynamic receding angle.

• ka, kr: Material-dependent constants for the advancing and receding phases, respec-
tively.

For the advancing phase (ucl ≥ 0), the dynamic contact angle increases with ucl and is
capped at θmda. For the receding phase (ucl < 0), the dynamic contact angle decreases
with ucl but is limited by θmdr. This model captures the asymmetric nature of advanc-
ing and receding contact angles by using distinct constants (ka, kr) and dynamic limits
(θmda, θmdr).

2.5.7 Davis–Hocking Model for Contact-Line Dynamics

The Davis–Hocking model describes the relationship between the dynamic contact angle θ
and the contact-line velocity ucl via the mobility parameter M . The fundamental equation
is:

M∆α = ucl, (2.22)

Where, ∆α = θ − θE is the difference between the dynamic contact angle and the equi-
librium contact angle θE. In systems with contact angle hysteresis, the model expands as
[27]:

θ =

{
θa +

ucl

M
, if ucl > 0 (advancing)

θr +
ucl

M
, if ucl < 0 (receding),

(2.23)

Where, θA and θR are the advancing and receding static contact angles, respectively. To
ensure the dynamic contact angle remains physical, the following boundary condition is
applied:

θ = max(min(θ, 180◦), 0◦). (2.24)

This model captures the linear dependence of the dynamic contact angle on the contact-
line velocity, incorporating material properties via the mobility parameter M .
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2.6 Fluid-Structure Interaction (FSI)
Fluid-Structure Interaction (FSI) encompasses various methodologies for simulating the
interaction between multiphase fluids and solid structures, which is critical in numerous
engineering and scientific applications. These interactions become particularly complex
in multiphase scenarios, where different fluid phases (such as liquid, gas, and particles)
exert varying forces and moments on the structure. This complexity can significantly
influence the dynamics of the system, affecting factors such as stability, performance, and
material integrity. FSI problems involving multiphase flows are prevalent in fields such as
automotive and industrial engineering (e.g., Noise-Vibration-Harshness (NVH)), chemical
engineering (e.g., mixing of different fluids in reactors), environmental engineering (e.g.,
sediment transport in rivers), and biomedical engineering (e.g., the behavior of blood flow
in the presence of air bubbles or emboli). The accurate modeling of these interactions
is essential for predicting the behavior of the system under diverse operating conditions.
Various methodologies, including fully coupled (monolithic) methods, partitioned meth-
ods, weak coupling, and strong coupling, are employed to tackle these challenges, each
with its own set of advantages and limitations. As computational resources expand and
numerical techniques evolve, the capability to simulate multiphase FSI with greater preci-
sion continues to advance, empowering engineers and researchers to develop more effective
and resilient systems.

2.6.1 Fully Coupled (Monolithic) Methods

Fully coupled methods solve fluid and structural equations simultaneously within a uni-
fied framework, treating the interaction as a single problem. This approach provides
high accuracy and robustness by accounting for the complex nonlinear behaviors of both
fluid and structure. However, it is computationally intensive and requires sophisticated
algorithms, making implementation more challenging.

2.6.2 Partitioned Methods

Partitioned methods divide the FSI problem into independent fluid and structure sub-
problems, solving each sequentially or iteratively. This flexibility allows for the use of
specialized solvers for each component, which can be optimized separately. While this
method reduces the initial computational cost and allows for scalability, it may encounter
convergence issues and requires careful treatment of the interface to ensure accuracy.
Weak and strong coupling can occur within both fully coupled (monolithic) methods
and partitioned methods, but they have different implications depending on the con-
text. In partitioned methods, weak coupling implies minimal interaction, while strong
coupling means frequent data exchanges. In fully coupled methods, strong coupling is
inherent due to simultaneous solving of the fluid and structural equations. Understand-
ing these methodologies allows for better selection in engineering applications involving
fluid-structure interactions.

2.6.3 Weak Coupling

Weak coupling features a loose interaction between fluid and structure, where data ex-
change occurs infrequently, typically at larger time intervals. This approach reduces
computational effort and simplifies implementation, making it easier to utilize existing
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solvers. However, it can lead to inaccuracies in scenarios with strong interactions, as it
does not fully account for the fluid’s effect on the structure or vice versa.

2.6.4 Strong Coupling

Strong coupling involves a tight interaction with frequent data exchange between fluid
and structure solvers, allowing for a more accurate representation of their dynamics.
This method enhances accuracy and convergence in highly dynamic systems, but it also
significantly increases computational demands and complexity in implementation due to
the need for close coordination between solvers.

2.6.5 Mode Superposition (Partitioned based weak coupling)

The method of modal superposition is employed to analyze the dynamic behavior of struc-
tures. It is estimated through the superposition of a limited number of modal frequencies
obtained from the modal analysis. Modal analysis comes into play to determine the vi-
bration characteristics, primarily the modes of operation and the natural frequencies of
a mechanical system or component. Natural frequency, or eigenfrequency, denotes the
frequency at which a system naturally oscillates without any external driving force. On
the other hand, mode shapes, also referred to as eigenvectors, depict the inherent behavior
of the component at its natural frequency. Both these parameters hold significance in the
structural design process, especially for scenarios involving dynamic loads. This approach
is particularly effective in minimizing computational efforts when evaluating the dynamic
response of linear structures [28, 29]. This technique proves advantageous especially when
dealing with limited known loading frequencies. However, it is less applicable to the issues
that encompass exceedingly high frequencies [30, 31].

The dynamic equation for a structure can be represented in matrix form as follows:

Mü+Cu̇+Ku = f (t) (2.25)

In this equation, M denotes the mass-normalized matrix, C represents the damping
matrix, and K stands for the stiffness matrix. The column vector u corresponds to the
degree of freedom, while f(t) represents the applied forces over time. These matrices are
obtained through the discretization of the physical domain, resulting in an NxN matrix
where N signifies the degrees of freedom of the structural model. Mass normalization is
convenient in the modal superposition, as it ensures that the modal mass is consistent
across all modes, simplifying the modal participation factors and making them directly
interpretable as a percentage of total mass.

The foundation of modal superposition is rooted in modal analysis, yielding essential
outputs such as eigenfrequencies and their corresponding mode shapes. The eigenfrequen-
cies are computed via the undamped dynamic equation, treated as an eigenvalue problem:

(−ω2M +K)Φ = 0, Φ 6= 0 (2.26)

In this context, the symbol Φ refers to the modal matrix, which contains a vector of
the mode shape corresponding to every natural frequency of the structure with n-DOF,
Φ = Φ1,Φ2, ...,Φn. Usually, the Finite Element Method (FEM) is used to model a
structure, and discretize and solve Equation (2.26). Multiple numerical methods exist
for determining natural frequencies and mode shapes, as no single method is universally
optimal for all problems. The techniques for extracting eigenvalues fall under the category
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of transformation methods and/or tracking methods. The eigenvalue equation is initially
converted into a specific format in the transformation method, facilitating the extraction of
eigenvalues. The tracking method involves extracting the eigenvalues individually through
an iterative procedure. In this study, the Lanczos method was used, which combines
characteristics of the tracking and transformation methods. Mass normalization involves
scaling the mode shapes such that the square of the mode shape integrated over the
structure equals one. This ensures that each mode shape has a unit mass and simplifies
the subsequent modal superposition calculations.

After the vibration modes and frequencies are extracted, their combination may be
used to simulate complex vibration of the structure. The superposition involves expressing
the displacement response as a linear combination of modal contributions. The overall
displacement (u(t)) of the structural system for a time step can be represented as a
combination of mode shapes:

u(t) =
n∑

i=1

Φyi(t) (2.27)

Where, y(t) is the vector of modal coordinates (or generalized displacement). While one
can extract many vibration modes from a FEM model, in engineering practice, usually
only first few modes are relevant for analysis. By applying the generalized displacement
and the mass normalized modal vector Φ (i.e., substituting Equation (2.27) into Equa-
tion (2.25)), the following is obtained:

ΦTMΦÿ(t) +ΦTCΦẏ(t) +ΦTKΦy(t) = ΦTf(t) (2.28)

To decouple the equation of motion for a Multi-Degree-of-Freedom (MDOF) system into
n equations of motion for Single Degree of Freedom (SDOF) systems, it is necessary to
diagonalize the damping term. This requires the introduction of a damping matrix, as
proposed by Lord Rayleigh, that is assumed to exhibit proportionality to both the mass,
stiffness matrices with Rayleigh constants (β, α).

C = βK + αM (2.29)

The final equation of motion to be solved to simulate the FSI is given as follows:

ÿi(t) + 2ωiζiẏi(t) + ω2
i yi(t) = ΦT

i f(t) (2.30)

Where, ζi represents the damping ratio associated with mode i. It signifies the extent of
real damping present within a system in comparison to critical damping.

While any integration method may be used to solve the above ordinary differential
Equation (2.30) (ODE), in this proposed coupling method, the equation is solved using
the Complementary Function and Particular Integral (CFPI) method [31]. The solution
is presented in two parts: the complementary solution and the particular solution.

The complementary solution is defined as:

yt = yt−1 · e · (C +
ζ

s
· S) + ẏt−1 · e ·

1

ωn · s
· S

ẏt = ẏt−1 · e · (C − ζ

s
· S)− yt−1 · e ·

ωn

s
· S

(2.31)

where, yt is displacement of current time step, yt−1 is displacement of previous time
step, ẏt is velocity of current time step and ẏt−1 is velocity of previous time step
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The particular solution is defined as:

yt = −e · Ft−1 ·
(
ζ · ωn · dt+ 2 · ζ2 − 1

ωn
2 · W

· S +
ωn · dt+ 2 · ζ

ωn
3 · dt

· C
)

+Ft−1 ·
2 · ζ

ωn
3 · dt

+ e · Ft ·
(
2 · ζ2 − 1

ωn
2 · W

· S +
2 · ζ

ωn
3 · dt

· C
)

+Ft ·
ωn · dt− 2 · ζ

ωn
3 · dt

ẏt = e · Ft−1 ·
(
ζi + ωn · dt
ωn · wts

· S +
1

ωn
2 · dt

· C
)
− Ft−1 ·

1

ωn
2 · dt

−e · F ·
(

ζi
ωn · wts

· S +
1

ωn
2 · dt

· C
)
+ F · 1

ωn
2 · dt

(2.32)

The following coefficients are introduced for easier readability of the equations:

s =
√
1− ζ2

W = ωn · dt · s
e = exp(−ζ · ωn · dt)
S = sin(W )

C = cos(W )

(2.33)

The final solution is obtained as the sum of both complementary solutions and par-
ticular solutions. The CFPI method of integration was chosen in this study, because
it was verified that it is less sensitive to numerical errors when solving high-frequency
oscillations, as compared to the Newmark-beta method [31]. Since the vibration of the
structure is simply obtained using the direct integration of deformation and velocity value
for each mode, the time-step used for CFPI integration may be decoupled to fluid solver
time-step criterions. In other words, the high frequencies of the structural vibrations may
be accurately reproduced while interacting with fluid flow.
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3.1 Relevant Studies - Lagrangian Differencing Dynamics (LDD)
Initially, Basic et al. [32] established the foundational theoretical framework with their
study of meshless renormalized Laplacians for boundary value problems, setting the stage
for novel Lagrangian methods to simulate free surface flows, which is called Lagrangian
Differencing Dynamics (LDD). It stands out from other major meshless methods, which
typically prioritize conservation first and then focus on solution consistency. In contrast,
the LDD method begins with a unique approximation scheme to ensure accurate gradi-
ent and Laplacian operators with second-order consistency. This approach allows for a
smaller support domain, resulting in higher computational efficiency. Additionally, LDD
incorporates a position-based point regularization scheme that is unconditionally stable
and ensures conservation throughout the solution process. Furthermore, its novel bound-
ary treatment requires only a surface mesh, simplifying boundary handling compared to
traditional methods. The equations are solved in a fully mesh-free manner, with imple-
mentations that are fully parallelized on both GPU and CPU, maximizing computational
speed and scalability. The solution of a time step in the LDD method initiates with the
Lagrangian advection of points, i.e., the points are moved in space according to their ve-
locities. The streamlines compressibility issues that arise during Lagrangian advection are
resolved using the Particle-Based Dynamics (PBD) technique, which iteratively rearranges
the locations of points by enforcing a uniform distances between neighbor points [33]. Fol-
lowing this, the pressure Poisson Equation (PPE) defined above is discretized by using
the discrete operators, that are defined above and analyzed in [34]. In this study, the
PPE is solved using the preconditioned BiCGSTAB linear solver, as explained in [33].
This groundwork was expanded and applied the LDD technique to sloshing simulations,
demonstrating the method’s capability in addressing complex fluid dynamics problems
[35]. The approach was further extended to predict green water loadings, showcasing its
effectiveness in maritime applications with wave impacts and fluid loadings. Subsequent
advances, the refined method for incompressible flow dynamics, broadening its applicabil-
ity to various fluid flow scenarios [36]. Integration with structural analysis was explored
by Basic et al. [37], who coupled meshless non-Newtonian fluid flow integrated with struc-
tural solvers, illustrating the method’s versatility. Further diversified the application of
LDD to granular flow modelling, expanding its use beyond fluids to granular materials
[38]. Recent developments by Paneer et al. [39, 40] have refined LDD for the elastic
behaviour of structures and fluid-structure interactions, respectively. Johannes et al. [41]
developed a GPU-powered finite difference solver, using a generalized approach for incom-
pressible multiphase flows using a Riemann solver. The approach features a dampening
scheme that handles high-density ratios using LDD Laplacian, as introduced in [32].
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3.2 Relevant Studies - Multiphase
Multiphase flow dynamics is a complex and highly specialized area of study that focuses
on the interactions between different fluids separated by a thin interface layer. This
interface can exhibit intricate and dynamic behavior as the various fluid phases inter-
act, often leading to complex flow patterns. The accurate modeling and simulation of
these interfaces are essential in many engineering and scientific applications, including
fluid-structure interactions, industrial processes, and environmental modeling. Special-
ized techniques and advanced mathematical frameworks are employed to capture and
simulate these interfaces, especially in Eulerian frameworks.

In Eulerian approaches, the challenge lies in capturing the interface between fluids,
given that these methods work on a fixed grid. One prominent technique used to represent
the interface in this framework is the Phase Field method, first described by Cahn and
Hilliard [1]. This method introduces a continuous field variable that implicitly represents
the interface as a diffuse region, where the properties of the fluid vary gradually across the
interface. This technique allows for a smooth transition between different phases and has
been widely adopted due to its simplicity in modeling the dynamics of phase transitions.
Another widely used technique is the Volume of Fluid (VOF) method, introduced by Hirt
and Nichols [2]. The VOF method tracks the interface using a fractional volume function
that indicates the proportion of each fluid present in each mesh element. It provides a
good balance between computational efficiency and accuracy, especially for cases where
the interface is relatively stable and does not exhibit sharp or highly dynamic changes.
The Level Set method, introduced by Osher and Sethian [42], offers a different approach to
interface tracking. This method employs a signed distance function to implicitly define the
boundary of the interface as the zero-level set, providing a robust way to handle complex
interface shapes. Sussman et al. [3] further improved the Level Set method by enhancing
its ability to handle two-phase flows, particularly in cases with high-density ratios and
surface tension, thus improving its accuracy and efficiency in complex fluid dynamics
scenarios involving air and water. The Front Tracking method, developed by Unverdi
and Tryggvason [43], is another approach that explicitly tracks the interface using marker
points that define its position. This method is particularly useful in simulations where
the interface experiences large displacements and deformation. An advanced variant of
these methods is the Conservative Level Set method [44], which integrates the features of
both the VOF and Level Set methods to enhance mass conservation and effectively handle
complex interface dynamics. More recent developments, such as the method introduced
by Theillard et al. [5], simulate incompressible two-phase flows using a sharp interface
approach. This method incorporates adaptive Cartesian grids for improved resolution
and includes capillary forces in the pressure correction to maintain stability, even in
complex and dynamic fluid interactions. Kamran et al. [45] proposed a combination of
the Extended Finite Element Method (XFEM) with the Particle Level Set (PLS) method,
providing an effective solution for simulating multi-fluid flows in engineering applications.

In contrast to Eulerian methods, Lagrangian methods naturally track fluid interfaces
by following the motion of fluid particles or parcels, which inherently captures the in-
terface dynamics without the need for separate interface-tracking techniques. The most
well-known Lagrangian method is Smoothed Particle Hydrodynamics (SPH), which was
initially developed by Gingold and Monaghan [46] and Lucy [47]. In SPH, the fluid is
represented by discrete particles that carry physical properties such as density, pressure,
and velocity, and these particles interact with each other based on a smoothing ker-
nel. This method is highly flexible and can handle large deformations and free surface
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flows. However, numerical instabilities can arise in certain multiphase flows due to par-
ticle interaction, especially in cases involving sharp interfaces and high-density contrasts.
The Moving Particle Semi-Implicit (MPS) method [48] is another particle-based method
that improves stability through semi-implicit time-stepping schemes, offering better per-
formance in simulating complex free surface and multiphase flows. The Element-Free
Galerkin (EFG) method [49], unlike traditional mesh-based methods, does not rely on a
fixed grid but uses nodes to represent the fluid and solve the governing equations. While
Lagrangian methods have several advantages, such as better capturing the movement of
the interface, they can suffer from numerical instabilities, particularly in multiphase flows
where large variations in density or viscosity occur. The Particle Finite Element Method
(PFEM), also Lagrangian-based, is another technique where particles represent material
points, and an updated finite element mesh is generated dynamically at each time step
[50]. This method provides a flexible way to solve fluid dynamics problems but can be
computationally expensive.

Over time, significant advancements have been made to overcome the limitations of
these methods in multiphase flow simulations. SPH, which has been foundational in
fluid simulation since its early developments by Gingold and Monaghan [46] and Lucy
[47], has undergone significant improvements, especially in its ability to handle high-
density contrasts and complex free-surface flows. Enhancements in kernel functions [51,
52] have allowed for better precision and stability in simulations involving multiphase
fluids. The initial SPH models that addressed multiphase flows with density variations
[6] have evolved into more sophisticated techniques that handle particles of varying den-
sities, enabling realistic interactions between different fluid phases. This has made SPH
particularly useful in astrophysical applications, such as simulating galaxy formation and
fluid interactions in mixed-density environments [53]. Hu and Adams [54] applied SPH
to capture macroscopic and mesoscopic flows, effectively dealing with density contrasts
and interfacial dynamics. Further developments, such as the Hamiltonian interface SPH
formulation by Grenier et al. [55], improved the method’s ability to handle flows in-
volving different fluids and free surfaces. In addition, Monaghan et al. [56] developed a
robust SPH algorithm for immiscible flows, stabilizing interfaces and adjusting pressure
for high-density ratios. Rezavand et al. [57] introduced an ISPH (incompressible SPH)
scheme that used repulsive forces to maintain sharp interfaces and improve stability in
complex multiphase flows, while later improvements by Rezavand [58] addressed the chal-
lenges of violent multiphase flows, enhancing both stability and accuracy. Shimizu et
al. [59] applied ISPH to model oil spills, incorporating additional models for oil-water
mixing and turbulence. Olejinik et al. [60] focused on resolving wetting phenomena
within SPH, and Vacondio et al. [61] identified several challenges within SPH numerical
schemes, particularly in improving computational efficiency and robustness. Recent ad-
vancements also include the development of a multi-scale SPH framework for simulating
multiphase interactions between fluids and structures [62], enabling more detailed and
accurate simulations of real-world problems.

Similarly, the MPS method, which was first introduced by Koshizuka and Oka [48],
has also seen significant advancements for multiphase flow simulations. Guangtao Duan
extended the MPS method into a multiphase framework called Multiphase MPS (MMPS),
which is specifically designed to handle fluids with varying viscosities and densities. Duan
introduced two key stabilization techniques: MMPS-HD (harmonic density) and MMPS-
CA (continuous acceleration), to address instabilities at the fluid interface by modifying
particle interactions. These techniques have been validated through numerous simula-
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tions, and the MMPS-CA method has shown superior performance, especially when han-
dling high-density and viscosity ratios [7]. Despite these improvements, the MPS method
still faces challenges in simulating violent multiphase flows. To further address these
issues, enhancements such as using a Laplacian operator with error-free first-order deriva-
tives in MMPS have been introduced, improving the stability and accuracy of the method
in complex flow scenarios [63]. A detailed summary of the study on multiphase systems
is presented, along with relevant literature, as shown in the Table 3.1.

Method Description
Phase Field Method Uses a continuous field variable to represent

the interface as a diffuse region, allowing a
smooth transition between phases [1].

Volume of Fluid (VOF) Tracks the interface using a fractional
volume function, representing the proportion
of each fluid in mesh elements [2].

Level Set Method Uses a signed distance function to implicitly
characterize the interface at the zero-level
set [42].

Improved Level Set Enhances the original Level Set method for
handling high-density ratios and surface
tension effects [3].

Front Tracking Directly tracks the interface using marker
points to explicitly define interface positions
[43].

Conservative Level Set Combines VOF and Level Set methods for
improved mass conservation and complex
interface dynamics [44].

Sharp Interface Level Set Integrates modified pressure correction and
adaptive grids, incorporating capillary forces
into pressure estimation for high stability [5].

XFEM with Particle Level Set Uses extended finite element with particle
level set to simulate multi-fluid flows,
handling complex interfaces and boundary
interactions [45].

Smoothed Particle Hydrodynamics
(SPH)

Particle-based, using smoothing kernels for
properties like density and pressure, suited
for free-surface flows and astrophysics [46,
47, 51, 52, 6, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62].

Moving Particle Semi-implicit (MPS) Particle-based method with semi-implicit
time stepping, ensuring stable calculations
for incompressible flows with complex
interfaces [48, 7, 63].

Particle Finite Element Method
(PFEM)

Combines particle and finite element
approaches, where particles represent
material points, used for remeshing and
solving governing equations [50].

Table 3.1: Summary of study on Multiphase methods and literature reviews
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3.3 Relevant Studies - Surface Tension and Dynamic Contact
Angle

Surface tension plays a vital role in multiphase flow simulations, and various methods have
been developed to model it effectively, each with its own strengths and applications. The
Continuum Surface Force (CSF) method treats surface tension as a body force distributed
across the interface, enabling a robust handling of interface dynamics without explicitly
tracking the interface position, which makes it well-suited for simulating complex fluid
behaviors in large-scale simulations [19]. In contrast, sharp interface methods directly
apply the Young-Laplace equation to impose pressure jumps across interfaces, making
them particularly suitable for scenarios where precise interface tracking and resolution
are required, such as in simulations of droplet dynamics or bubble formation [4]. The
Ghost Fluid Method (GFM) utilizes ghost cells to impose jump conditions for variables
near the interface, ensuring an accurate representation of discontinuities in physical prop-
erties like pressure and velocity, which is beneficial in capturing sharp interface behavior
and reducing numerical errors near the boundary [64]. Diffuse Interface Models (DIM)
represent the interface as a smooth transition between phases, effectively avoiding explicit
interface tracking while still capturing interfacial phenomena such as capillary waves and
phase separation, making them ideal for systems where the interface is less distinct or
more diffusive in nature [65]. The Lattice-Boltzmann Method (LBM) introduces surface
tension through modified particle interactions, enabling the simulation of complex ge-
ometries and fluid behavior in systems with intricate boundaries, such as porous media
or microfluidic devices [66]. Lastly, Smoothed Particle Hydrodynamics (SPH) employs a
meshless approach to calculate surface tension forces among particles, excelling in scenar-
ios with significant interfacial deformation, such as free-surface flows, and offers flexibility
in handling large-scale simulations with adaptive resolution and dynamic interfaces [67].
Each of these methods has its own set of advantages and trade-offs, making them suitable
for different types of multiphase flow problems.

Dynamic contact angle (DCA) models are essential for accurately simulating multi-
phase flow systems, especially where wetting dynamics are complex and vary with surface
interactions and fluid velocities. The first rigorous description of the contact angle was
introduced by Young in 1805, who described the static contact angle as the equilibrium
state of a droplet on a solid surface, now famously expressed by Young’s Equation [68].
However, Young’s equation applied only to static, equilibrium conditions, without ad-
dressing the concept of dynamic contact angles. Shortly after, Pierre-Simon Laplace
extended the understanding of capillary action in 1806 by formulating the Young-Laplace
equation, which relates the pressure difference across a curved liquid interface to the sur-
face tension [69]. In the early 20th century, scientists began exploring how the contact
angle behaves when the contact line moves. Harkins and Jordan (1930) were among the
first to demonstrate that the contact angle changes when a liquid moves across a surface,
introducing the concept of contact angle hysteresis, where the advancing contact angle is
larger than the receding contact angle [70]. Blake and Haynes (1969) furthered this by
studying liquid-liquid displacement kinetics, focusing on how interfacial properties and
dynamic contact angles impact fluid movement in capillaries [71]. A major theoretical
breakthrough occurred with Joanny and de Gennes (1984), who proposed a model for the
dynamic contact line. They suggested that the contact angle depends not only on surface
tension but also on the speed at which the contact line moves, with faster movement
leading to a greater deviation from the static contact angle [72]. Charles Extrand and
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Alan Shapiro (1995) further advanced the understanding of dynamic wetting by system-
atically studying contact angle hysteresis. They observed that when a liquid advances
across a surface, it encounters greater resistance due to surface roughness or chemical
heterogeneity, leading to a larger contact angle. Conversely, during receding, the contact
angle is smaller [73]. Another important theoretical advancement came with the Cox-
Voinov law (1976), which relates the dynamic contact angle to the velocity of the moving
contact line through a logarithmic correction term, particularly useful for low-speed wet-
ting scenarios such as in coating flows [74]. Cox extended the model to calculate both
advancing and receding dynamic contact angles by accounting for the capillary number
and apparent contact angle, including physical slip length, thereby improving the repre-
sentation of viscous forces and surface interactions [24]. Tanner’s empirical correlation
(1979) laid one of the early foundations for describing receding contact angles based on
the capillary number, influencing subsequent models dealing with contact line dynamics
in multiphase flow [22]. Kistler’s Model (1993), leveraging Hoffman’s empirical function
[21], relates the dynamic contact angle to the capillary number and static contact angle,
widely applied for advancing angles. Adaptations of this model also allow for the pre-
diction of receding angles [20]. Shikhmurzaev’s Model (1997) links the dynamic contact
angle to the contact line velocity and phenomenological constants, offering versatility for
complex fluid behaviors on surfaces with varying wettabilities [75]. The Dynamic Reced-
ing Contact Angle Model (2010), introduced by Nichita et al., extended Kistler’s model
to provide a cubic-root function-based approach for receding contact angles, combining
Kistler’s model with Tanner’s correlation to describe receding behavior in multiphase flow
[76]. Yokoi et al. (2009) proposed a model for dynamic contact angles that describes the
angle as a function of contact line velocity, incorporating capillary and inertia-dominated
regimes. Their model uses Tanner’s law for low velocities and applies maximum/minimum
dynamic angles for high velocities, ensuring asymmetry between advancing and receding
phases for more accurate droplet behavior predictions [26]. The Quasi-Dynamic Contact
Angle Model (2015) simplifies the modeling process by employing fixed advancing and
receding angles based on experimental data. While less computationally demanding, its
accuracy relies heavily on the availability of detailed experimental data [77]. Snoeijer and
Andreotti (2013) introduced the concept of contact line friction, a molecular-scale interac-
tion that resists the motion of the contact line, providing a more refined understanding of
dynamic wetting by linking microscopic molecular forces to macroscopic observations [78].
Ludwicki et al. (2022) investigated whether the contact-line mobility parameter, which
describes the relationship between the dynamic contact angle and contact-line velocity, is
a material parameter, using both experimental and numerical approaches to study binary
sessile drop coalescence on various surfaces [27]. These models and developments have
greatly enhanced our understanding of dynamic wetting behavior in multiphase flow and
continue to be integral in improving the accuracy of simulations in various industrial and
scientific applications.
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3.4 Relevant Studies - Fluid–Structure Interaction (FSI)
Fluid–Structure Interaction (FSI) is a prevalent physical phenomenon with significant
relevance across various engineering applications, particularly in systems where fluid and
structural dynamics are coupled. Some of the most important applications include the
interaction between waves and vegetation in coastal wetlands, and wave–ice interactions
in the Arctic environment, both of which are crucial in mitigating coastal flooding and
understanding the dynamics of extreme environments [79], [80]. FSI plays a pivotal role
in optimizing structural designs to ensure performance under fluid loads, contributing
to the efficiency and reliability of designs for offshore installations, windmills, and ships
[81]. Identifying FSI-related issues early in the design phase can lead to cost-effective
design changes, minimizing the need for costly modifications during manufacturing or
operation [82]. Additionally, FSI is a critical factor in the hydrodynamic performance of
propellers, as evidenced in recent studies [83], [84]. In these systems, damping represents
the energy dissipation within vibration cycles and plays a key role in resonance phenom-
ena, significantly affecting vibration amplitudes and the number of notable vibrations
in time-dependent scenarios. While the role of damping is often negligible in slightly
damped vibrations, it becomes pronounced near resonant frequencies, where excitation is
largely balanced by damping. In such cases, structural damping is generally low except
at resonance, when vibration cycles maintain substantial independence [85].

However, simulating FSI effectively is a complex task that requires specific assump-
tions in both structural and fluid simulations. In most Computational Fluid Dynamics
(CFD) simulations, elastic deformation at the boundaries is typically ignored [33], while
in structural simulations, a constant pressure is usually assumed for both the interior
and exterior boundaries. Paik et al. [86] developed methods for coupling CFD solvers
with rigid and elastic models of a ship hull to compute structural loads. They employed
one-way and two-way coupling approaches to model the ship as elastic. In one-way cou-
pling, CFD forces are used for structural load analysis, but deformations are not fed back
into the CFD solution. In contrast, two-way coupling incorporates hull deformations into
the CFD solution. A URANS/DES overset solver coupled with the modal superposition
method was used for these analyses, with a gluing method applied to transfer forces and
deformations between non-matching CFD and structural grids [86].

Several approaches have been proposed to tackle the intricacies of one-way and two-
way coupling in FSI. A prominent method is the fully coupled (monolithic) approach,
which integrates both structural and fluid calculations within a single solver [87, 88]. How-
ever, conventional CFD solvers generally use an Eulerian-based approach, while structural
formulations often rely on a Lagrangian-based approach. This results in a computational
stiffness mismatch between the fluid and structural components, making extensive sce-
narios computationally intensive [89]. As a result, grid-based partitioned methods have
gained popularity as a more feasible alternative. These methods solve fluid and struc-
tural formulations on different meshes using distinct solvers [90], but require effective
communication protocols at the interface to transfer fluid loads to the structural mesh
and vice versa. Mesh-based solvers also require careful manipulation of adjacent mesh
nodes to prevent mesh entanglement or deformation when adjusting fluid mesh bound-
aries [91], [92]. Recent developments have successfully applied partitioned methods, such
as coupling thin-walled girder theory with potential flow theory [28, 93] and linking modal
structure solvers with RANS-VOF solvers and Boundary-Integral Equation Methods [94].
Solid4Foam, integrated with OpenFOAM, is one such method used for solving FSI prob-
lems [95, 96].
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The meshless-based partitioned method has proven to offer several advantages, espe-
cially in scenarios involving free surfaces, violent flow, complex models, and large deforma-
tions [97]. By avoiding the need for re-meshing the model after deformation, it becomes
highly effective in simulating complex fluid-structure interactions. FSI is achieved by cou-
pling Smooth Particle Hydrodynamics (SPH) with structural solvers such as the Finite
Element Method (FEM) [98, 99, 100] and Discrete Element Method (DEM) [101, 102, 103]
to compute structural deformation. However, transferring information between the fluid
and structural solvers is not trivial, as it is necessary to resolve the interfacial energy bal-
ance [104]. Although solving structural deformation using this method is computationally
expensive, it is generally more efficient than the monolithic approach.

In recent years, the Mode Superposition method has gained popularity due to its ro-
bustness, speed, and computational efficiency in solving structural deformation. Debra-
bandere et al. (2012) introduced a reduced-order modeling approach for FSI simulations,
using modal analysis to represent structural dynamics. The method solves the modal
equations within the CFD solver using a complementary function and a particular inte-
gral method, achieving good results for simple test cases and demonstrating potential for
efficient aeroelastic analysis of flexible structures in turbomachinery configurations [31].
Sun et al. (2019) applied the Moving Particle Semi-implicit (MPS) method in combina-
tion with the mode superposition technique to simulate violent hydroelastic phenomena
[105], while Corrado et al. (2020) validated a two-way coupling approach between CFD
and FEM solvers using the HIRENASD test case [30]. Modal superposition is a widely
used and valuable technique due to its simplicity and computational efficiency, although
its accuracy diminishes when large structural deformations occur. This is because the
method assumes linear behavior and uncoupled modes, which may not hold true in cases
involving significant nonlinearity or mode coupling. Despite these limitations, modal su-
perposition remains effective for evaluating structures subjected to dynamic loads within
its valid range [31, 105, 30].

Weak coupling in FSI provides simplicity and ease of implementation, making it suit-
able for transient events. However, it has limitations, including stability issues requiring
small time steps, which can lead to computational inefficiency, especially in large-scale
simulations where fluid and structural solvers may require time steps of different magni-
tudes. Despite these challenges, the mode superposition approach allows the structural
solver to add minimal computational cost, enabling better alignment with the flow solver’s
time step requirements [106], [31], [93].
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4 Conclusion and Future Work
This paper provides an overview of multiphase flow modeling and fluid-structure inter-
action. It includes a mathematical formulation of multiphase flow, a classification of
numerical methods, and a review of past research in this field. Detailed study of surface
tension, FSI and dynamic contact angle are presented. Also, the detailed scope of the
work is explained.

4.1 Scope of the Work
To develop a model for Fluid–Structure Interaction (FSI) by combining the Mode Super-
position method and the Lagrangian Differencing Dynamics (LDD) method in two-way
partitioned weak coupling or explicit coupling. In terms of computational efficiency, the
LDD method is advantageous compared to most popular meshless approaches, such as
SPH, MPS and FPM [107, 108, 109]. The LDD method achieves large time steps with
lower computational costs while maintaining second-order accuracy. It is well-suited for
complex transient problems since it has the advantage of directly working on the surface
mesh as boundary conditions [110, 28, 93, 33]. Using the mode superposition method
with LDD, structural deformation is calculated for the fluid load using precalculated
mode shapes and natural frequencies from the modal analysis. This approach leads to
stable, robust, and computationally efficient FSI simulations. The method enables fluid-
induced structural deformation to be weakly coupled into the flow solver. The deformation
is obtained by using direct integration. The flow particles and vertices of the structure
are advected in Lagrangian coordinates. This results in Lagrangian–Lagrangian coupling
in space, while there is weak or explicit coupling in time. This ensures a more accurate
representation of the interaction between fluid and structure in ship and offshore hydrody-
namics. The efficiency of the LDD and Mode Superposition methods, operating directly
on surface meshes, may lead to practical and effective ship and offshore hydrodynamic
simulations.

Further, the need for extending the original LDD framework to multiphase flows arises
from its limitations when addressing scenarios where fluids of differing densities and vis-
cosities interact. Although the LDD method has shown high effectiveness in modelling in-
compressible single-phase flows with large viscosity variations, multiphase flows introduce
additional complexities such as capturing sharp interfaces and handling abrupt changes
in flow field properties across these interfaces. For instance, a critical requirement in
multiphase simulations is to maintain a stable interface with a sharp transition in density
and pressure, as well as a robust management of high gradients in viscosity. Extending
LDD to multiphase applications, enables it to address these challenges, maintaining both
accuracy and stability even in the presence of complex fluid interactions.

4.2 Future Research
To develop a multiphase Lagrangian Differencing Dynamics (MP-LDD) approach, a novel
enhancement of the Lagrangian Differencing Dynamics (LDD) method specifically de-
signed for stable and accurate multiphase flow simulations is required. By incorporating
a variable coefficient Laplacian, MP-LDD can achieve precise discretization of pressure
and velocity fields, effectively addressing variations in density and viscosity, thereby en-
abling a more accurate representation of multiphase interactions. MP-LDD can employ
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a unified single pressure and velocity equation applicable to both phases, in contrast to
separate equations for each phase. Furthermore, a modified Position-Based Dynamics
(PBD) framework can ensure the interface stability under varying density conditions.
This framework is essential for simulating flows with high-density ratios and mitigating
unintended mixing between immiscible fluids. Additionally, this can facilitate the man-
agement of pressure jumps across interfaces, enhancing the practicality of phase interac-
tions while guaranteeing continuous acceleration and preventing void formation. These
innovations will establish MP-LDD as a GPU-based, high-performance tool that provides
efficient and accurate modeling capabilities for complex multiphase flows, highlighting its
wide applicability across various multiphase scenarios. A novel multiphase Lagrangian
Differencing Dynamics (MP-LDD), GPU based method will be developed to address spe-
cific challenges in multiphase flow simulation. The solver’s meshless approach is ideal
for precision spraying in printing and electronics, paint atomization through ultrasonic
waves, underwater engineering with wave interactions, and environmental simulations like
sediment transport and oil spills. It also addresses phase change in cooling systems and
thermal processes in metal casting and additive manufacturing. By incorporating acoustic
forces and droplet dynamics, the solver provides a powerful tool for simulating intricate
multiphase flows across various industries. Additionally, a weak coupling approach to
fluid-structure interaction will be introduced. The solver’s objectives focus on ease of
use, efficiency, scalability, and compatibility with complex multiphase scenarios. The core
goals of MP-LDD are outlined in the sections below. These objectives demonstrate MP-
LDD’s commitment to meeting critical needs in computational fluid dynamics by offering
an innovative and accessible approach to multiphase flow modeling.

4.2.1 Meshless Method

Unlike traditional grid-based approaches, MP-LDD is a meshless method. This eliminates
the need for a predefined grid structure, enhancing the solver’s flexibility in handling com-
plex domain geometries. The meshless nature of MP-LDD is advantageous in scenarios
where interface tracking is challenging, such as in high-density-ratio multiphase flows,
since it allows particles to move freely without being constrained by grid boundaries.

4.2.2 GPU-Based Solver

The MP-LDD method leverages a GPU-based computational framework, allowing for
significantly faster processing times. This parallel computing capability is essential for
handling the high computational demands of multiphase simulations, particularly those
involving complex interactions like Rayleigh-Taylor instabilities and fluid-solid interac-
tions. GPU support also aids in reducing simulation time, making the method suitable
for real-time or near-real-time applications in engineering.

4.2.3 Ease of Setup

A primary goal of MP-LDD is to streamline the setup process, making it accessible for
researchers and engineers with varied expertise levels. By reducing the complexity of
input parameters and optimizing initialization procedures, MP-LDD minimizes the time
required to begin simulations. This simplicity allows users to focus more on analyzing
results and less on complex setup configurations, improving workflow efficiency.
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4.2.4 Scalability

MP-LDD is designed for easy scalability to large simulations. Its meshless nature and
GPU-based acceleration allow it to handle a large number of particles without a significant
compromise on performance. Scalability is further facilitated by the variable Laplacian
framework in multiphase, which supports high density and viscosity ratios while main-
taining interface sharpness and stability across extensive simulations.

4.2.5 Rapid Development Cycle

MP-LDD aims to provide a platform that allows for quick adjustments and testing, en-
abling rapid prototyping of new physical models and modifications. The straightforward
nature of the Position-Based Fluids (PBF) approach in MP-LDD, combined with its sta-
ble and sharp interface, provides a development-friendly environment. This objective is
particularly beneficial in research and development, where fast iteration is essential for
testing new hypotheses or exploring novel applications.

4.2.6 Novel Applications

Our focus is on utilizing the innovative Multiphase Lagrangian Differencing Dynamics
(MP-LDD) method to tackle challenging multiphase scenarios with fluid structure inter-
action.

• Hydrogen Appplication: Accurate modeling of bubble dynamics and phase in-
terfaces plays a crucial role in hydrogen generation processes, such as water elec-
trolysis and steam reforming. Additionally, the safe storage and efficient mobility
of hydrogen rely on understanding multiphase flow phenomena, including gas-liquid
interactions, surface tension effects, and dynamic wetting behavior.

• Paintshop Processes: In spray coating and painting applications, surface ten-
sion, fluid deformation, and contact angle dynamics are critical in ensuring uniform
coating thickness and smooth finishes, especially on complex automotive and air-
craft surfaces. In dip coating, objects are submerged in a liquid to form a uniform
coating layer. The effects of dynamic wetting is to optimize coating thickness and
uniformity. This is crucial for industries like automotive, electronics, and consumer
goods. In dip Deformation Analysis, understanding fluid flow and deformation
during dip coating in automotive paint shop processes is essential for achieving con-
sistent finishes. Multiphase flow simulations with fluid-structure interactions (FSI)
help analyze dip deformation.

• Gearbox Oil Distribution: The simulation of oil distribution in gearboxes in-
volves violent multiphase flow, high-speed rotation, and fluid-structure interactions.
Accurate modeling of such complex physical processes helps optimize lubrication
performance and minimize wear in automotive and industrial applications.

• Biofouling and Hydrophobic Surfaces: Hydrophobic surface design is crit-
ical for anti-fouling coatings and self-cleaning surfaces. By analyzing fluid-solid
interactions and dynamic boundary conditions, these surfaces enhance resistance to
biofouling and ensure longevity in marine, medical, and industrial applications.
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• Droplet Formation and Injection: Surface tension dynamics play a pivotal role
in droplet formation. Also, in ultrasonic sound-driven and surface tension driven
fluid injection systems. This is vital for applications in space and microgravity
environments, where conventional fluid dynamics are altered. Movement of droplets
using electric forces, magnetic forces and thermo capillary action.

• Laser Bed Welding: Multiphase flow simulations are essential in laser bed welding
to model molten metal dynamics, phase changes, and surface tension effects. These
simulations help optimize weld quality, reduce defects, and improve precision in
advanced manufacturing processes.
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List of Symbols and Abbreviations
β, α Rayleigh constants

ẏt Velocity of current time step

ẏt−1 Velocity of previous time step

Φ Mass normalized modal vector

C Damping matrix

f(t) Applied forces over time

K Stiffness matrix

M Mass-normalized matrix

u Column vector corresponds to the degree of freedom

yt Displacement of current time step

yt−1 Displacement of previous time step

δ(φ) Dirac delta function

γlg Liquid-gas surface tension

γsg Solid-gas surface energy

γsl Solid-liquid surface tension

κ Curvature of the interface

λ Slip length

Fs Surface tension force per unit volume

g Acceleration due to gravity

n Unit normal vector to the interface

r′ Distance vector of the center point

r Distance vector of the neighbour point

u Velocity

u0 Radial velocity

ucl Contact line velocity

µ Dynamic viscosity

∇ Vector of partial derivative operator

∇ · u Velocity divergence
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∇u Velocity gradient

∇H Gradient of Heaviside function

∇p Pressure gradient

∇2u Velocity Laplacian

ν Kinematic viscosity
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Ω Domain around the interface

φ Phase indicator

ρ Density

σ Surface tension coefficient

θ Contact angle

θA Advancing contact angle

θD Dynamic contact angle

θE Equilibrium contact angle

θR Receding contact angle

θapp Apparent contact angle

θmda Maximum dynamic advancing angle

θmdr Maximum dynamic receding angle

ζ Damping ratio

a1, a2 Fitted parameters

Ca Capillary number

D/Dt Material derivative

dt Time step

g(θ) Integral function or g-function

H(φ) Heaviside function

ka Material dependent contacts for advancing

kr Material dependent contacts for receding

L Apparent length

M Mobility parameter
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t Time
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CFD Computational Fluid Dynamics

CFPI Complementary Function and Particular Integral

CPU Central Processing Unit

CSF Continuum Surface Force

DCA Dynamic Contact Angle

DEM Discrete Element Method

DES Detached Eddy Simulation

DIM Diffuse Interface Model

DOF Degree Of Freedom

DPD Dissipative Particle Dynamics

EFG Element-Free Galerkin
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FEM Finite Element Method

FPM Finite Pointset Method

FSI Fluid-Structure Interaction

FVM Finite Volume Method

GFDM Generalized Finite Difference Method

GFM Ghost Fluid Method
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IBM Immersed Boundary Method
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LBM Lattice Boltzmann Method
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LDD Lagrangian Differencing Dynamics
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MD Molecular Dynamic
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MMPS-HD Multiphase Moving Particle Semi-Implicit - Harmonic Density

MP-LDD Multiphase Lagrangian Differencing Dynamics

MPS Moving Particle Semi-Implicit
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PDE Partial Differential Equation
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PPE Pressure Poisson Equation

RANS Reynolds-averaged Navier–Stokes equation
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SPH Smoothed Particle Hydrodynamics

SSF Sharp Surface Force
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VOF Volume of Fluid
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Abstract
Multiphase flow simulations are inherently complex due to the intricate interactions be-
tween different phases, especially when there are significant density and viscosity con-
trasts. These complexities often create challenges in accurately capturing sharp interfaces
and managing pressure jumps across phases, which can lead to numerical instability. One
of the main challenges in multiphase flow modeling is the accurate representation of phase
interfaces. It is crucial to capture the movement, deformation, and interaction of phase
boundaries to predict multiphase flow behavior accurately. Traditional grid-based meth-
ods frequently struggle to maintain sharp and stable interfaces, particularly in systems
with high-density and high-viscosity variations. Techniques such as the Level Set and
Volume of Fluid methods are commonly employed for interface tracking; however, they
require complex algorithms to ensure numerical stability and avoid interface smearing. In
addition to interface dynamics, surface tension forces significantly influence multiphase
flows, especially in microscale systems where interfacial forces dominate inertial forces.
Surface tension affects behaviors such as droplet coalescence, breakup, and spreading. Fur-
thermore, dynamic contact angles, which describe the interactions between fluid phases
and solid surfaces, introduce an additional layer of complexity to multiphase flow mod-
eling. These angles can vary with flow conditions, impacting capillary-driven flows and
surface wettability. Due to these complexities, multiphase flows can exhibit a wide range
of behaviors, from stable stratified flows to highly chaotic and turbulent regimes. Thus,
effectively modeling multiphase flows presents not only a significant scientific challenge
but also a critical need for optimizing industrial applications, ensuring environmental
safety, and advancing scientific research.

This paper provides an overview of multiphase flow modeling and fluid-structure inter-
action. It includes a mathematical formulation of multiphase flow and a classification of
numerical methods, along with a review of past research in this field. Moreover, a novel
multiphase, GPU-based solver will be developed, incorporating surface tension effects,
dynamic contact angles, and phase change phenomena. Additionally, a weak coupling
approach to fluid-structure interaction will be introduced.

Keywords: Multiphase, Pressure jump, Interface, Surface tension, Wettability and
Dynamic contact angle
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