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The impact of the convolution degree on the results of convolutional neural
networks in remote sensing problems

Abstract:

In recent years, space technologies have become increasingly integral to various industrial
and scientific domains, emphasizing the critical role of remote sensing and Earth observa-
tion in guiding decision-making processes. This doctoral thesis aims to enhance the un-
derstanding of remote sensing applications by leveraging Convolutional Neural Networks
(CNNs) across different convolution degrees (1D, 2D, 3D, and 4D). The primary research
question explores how the selection of convolution dimensionality influences CNN perfor-
mance across diverse tasks. 1D, 2D, 3D, and 4D convolutions are selected for recogniz-
ing spectral, spatial, and temporal features of data. A comprehensive systematic literature
review was conducted, analyzing publications related to 1D, 2D, 3D, and 4D-CNNs, ad-
dressing their domains of application, machine learning techniques used, and corresponding
datasets. Findings are synthesized in the form of ontology for CNN architecture selection
providing a structured framework, which is further evaluated in four case studies. The 1D-
CNN proved to be an appropriate method for extracting spectral information sufficient for
predicting point parameters such as Secchi disk depth. The 2D-CNN demonstrated suc-
cess in extracting spatial features from Sentinel-2 images for road detection. The 3D-CNN
with its ability to extract spectral-spatial features was successfully applied to the problem
of fire propagation potential detection. The 4D-CNN combined temporal with spectral and
spatial features, which proved extremely useful in detecting burned areas. Finally, a compar-
ison of all four convolutional neural networks for the task of semantic segmentation of land
cover was performed, where the 3D-CNN stood out as the best. Results of all case studies
are aligned with the central hypothesis that selecting appropriate convolution degree signifi-
cantly enhances deep learning performance in environmental monitoring applications. These
findings contribute to understanding of convolution strategies in remote sensing, offering in-
sights for researchers and practitioners seeking to optimize neural network architectures for
Earth observation technologies.

Keywords:
remote sensing, deep learning, convolutional neural network (1D, 2D, 3D and 4D-CNN),
multispectral imagery, classification, regression, segmentation, change detection, PRISMA
methodology
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Utjecaj stupnja konvolucije na rezultate konvolucijskih neuronskih mreža
u problemima daljinskih istraživanja

Sažetak:

Posljednjih godina svemirske tehnologije postaju sve više sastavni dio različitih industri-
jskih i znanstvenih domena, naglašavajući ključnu ulogu daljinskog istraživanja i proma-
tranja Zemlje u procesu donošenja odluka. Ova doktorska disertacija ima za cilj unapri-
jediti razumijevanje primjene daljinskog istraživanja korištenjem konvolucijskih neuronskih
mreža (CNN) kroz različite stupnjeve konvolucije (1D, 2D, 3D i 4D). Primarno istraživačko
pitanje istražuje kako odabir dimenzionalnosti konvolucije utječe na performanse CNN-a u
različitim zadacima. 1D, 2D, 3D i 4D konvolucije odabrane su za prepoznavanje spektralnih,
prostornih i vremenskih značajki podataka. Provedena je sveobuhvatna sistematska analiza
literature, analizirajući publikacije vezane uz 1D, 2D, 3D i 4D-CNN, njihove domene prim-
jene, korištene tehnike strojnog učenja i odgovarajuće skupove podataka. Nalazi su sinte-
tizirani u obliku ontologije za odabir CNN arhitekture pružajući strukturirani okvir i dodatno
su evaluirani u četiri studije slučaja. 1D-CNN pokazao se kao prikladna metoda za izdva-
janje spektralnih informacija dovoljnih za predvid̄anje točkastih parametara poput Secchi
dubine diska. 2D-CNN pokazao je uspjeh u izdvajanju prostornih značajki iz Sentinel-2 sni-
maka za detekciju cesta. 3D-CNN sa svojom sposobnošću izdvajanja spektralno-prostornih
značajki uspješno je primijenjen na problem detekcije potencijala širenja požara. 4D-CNN
kombinirao je vremenske sa spektralnim i prostornim značajkama, što se pokazalo izuzetno
korisnim u otkrivanju izgorjelih područja. Konačno, provedena je usporedba sve četiri kon-
volucijske neuronske mreže za zadatak semantičke segmentacije zemljišnog pokrova, gdje
se 3D-CNN istaknuo kao najbolji. Rezultati svih studija slučaja u skladu su s centralnom
hipotezom da odabir odgovarajućeg stupnja konvolucije značajno poboljšava performanse
dubokog učenja u aplikacijama za praćenje okoliša. Ovi nalazi doprinose razumijevanju kon-
volucijskih strategija u daljinskom istraživanju, pružajući uvide istraživačima i stručnjacima
koji žele optimizirati arhitekture neuronskih mreža za tehnologije promatranja Zemlje.

Ključne riječi:
daljinsko istraživanje, duboko učenje, konvolucijska neuronska mreža (1D, 2D, 3D i 4D-
CNN), multispektralne snimke, klasifikacija, regresija, segmentacija, detekcija promjena,
PRISMA metodologija

vi





Acknowledgments

This PhD thesis ....



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Sažetak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Acronyms and Symbols xix

1 INTRODUCTION 1
1.1 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 REMOTE SENSING 5
2.1 The Electromagnetic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sensor Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Spectral Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Radiometric Resolution . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Sensor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Active Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Passive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Data Preprocessing Techniques . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Radiometric Preprocessing . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Atmospheric Correction . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Geometric Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 Processing Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Overview of Satellite Missions . . . . . . . . . . . . . . . . . . . . . . . . 17

3 DEEP LEARNING 21
3.1 Image Analysis Techniques in Remote Sensing . . . . . . . . . . . . . . . 21

ix



3.1.1 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Pixel–based Classification . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Object–based Classification . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 Target Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.6 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.7 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 CNN Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Architecture of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 CNN training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Parameter Initialization . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 CNN Applications in Remote Sensing . . . . . . . . . . . . . . . . . . . . 32
3.5.1 1D–CNN (Spectral/Temporal) . . . . . . . . . . . . . . . . . . . . 33
3.5.2 2D–CNN (Spatial) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 3D–CNN (Spectral-Spatial) . . . . . . . . . . . . . . . . . . . . . 34
3.5.4 4D–CNN (Spectral-Spatial-Temporal) . . . . . . . . . . . . . . . . 35

4 SYSTEMATIC LITERATURE REVIEW OF CNN ARCHITECTURES IN
MULTISPECTRAL IMAGERY 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Eligibility Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Information Sources . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Effect measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Study Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Overview of Remote Sensing Publications . . . . . . . . . . . . . . 42
4.3.3 Meta–Analysis of Publications . . . . . . . . . . . . . . . . . . . . 47

x



4.3.4 Data Ontology for CNN Architecture Applications in Remote Sens-
ing Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 64
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 EVALUATION OF 1D–CNN MODEL 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Secchi Disk Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Sentinel-3 OLCI Data . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.4 Dataset Construction and Preprocessing . . . . . . . . . . . . . . . 72
5.2.5 1D-CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.6 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.7 Accuracy Assessment . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.8 Overview of Regression Algorithms for Comparison with 1D–CNN 78

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Quantitative Algorithm Performance . . . . . . . . . . . . . . . . . 79
5.3.2 Performance Analysis of 1D-CNN and Commonly Used Regression

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.3 The Spatial Distribution of Secchi Disk Depth . . . . . . . . . . . . 84

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Accuracy of the 1D-CNN Model . . . . . . . . . . . . . . . . . . . 87
5.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Applicability to Other Regions . . . . . . . . . . . . . . . . . . . . 88
5.4.4 Future Implications for Long-term Monitoring . . . . . . . . . . . 88

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 EVALUATION OF 2D–CNN MODEL 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 Dataset Construction and Preprocessing . . . . . . . . . . . . . . . 94
6.2.3 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.5 Overview of Common CNN Architectures for Comparison with 2D-

CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 2D–CNN Model Performance . . . . . . . . . . . . . . . . . . . . 100
6.3.2 Comparison with DeepLabv3, ResNet-50 and U-Net . . . . . . . . 102

xi



6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Accuracy of the 2D–CNN Model . . . . . . . . . . . . . . . . . . 104
6.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.3 Applicability to Other Regions . . . . . . . . . . . . . . . . . . . . 105
6.4.4 Future Implications for Long-term Monitoring . . . . . . . . . . . 105

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 EVALUATION OF 3D–CNN MODEL 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Dataset Construction and Preprocessing . . . . . . . . . . . . . . . 110
7.2.3 Model Implementations . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.1 3D–CNN Model Performance . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Comparison with 1D–CNN and 2D–CNN Models . . . . . . . . . 117
7.3.3 Qualitative Evaluation of FPP Prediction Maps . . . . . . . . . . . 119

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Accuracy of the 3D–CNN Model . . . . . . . . . . . . . . . . . . 122
7.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 EVALUATION OF 4D–CNN MODEL 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2.2 Dataset Construction and Preprocessing . . . . . . . . . . . . . . . 127
8.2.3 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.3.1 4D-CNN Model Performance . . . . . . . . . . . . . . . . . . . . 130
8.3.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4.1 Performance and Insights of the 4D-CNN Model . . . . . . . . . . 137
8.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.4.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 139

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 A COMPARATIVE ANALYSIS OF CNN MODELS FOR SEMANTIC SEG-
MENTATION 141

xii



9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.2 Dataset Construction and Preprocessing . . . . . . . . . . . . . . . 142
9.2.3 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.1 Performance Analysis of CNN Architectures . . . . . . . . . . . . 146
9.3.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10 CONCLUSION 151

BIBLIOGRAPHY 155

xiii



List of Tables

2.1 Overview of satellites for remote sensing and their basic parameters . . . . 20

4.1 Eligibility criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Search strategy for different databases and CNNs . . . . . . . . . . . . . . 40

4.3 1D-CNN publications that implement regression . . . . . . . . . . . . . . . 55

4.4 2D-CNN publications that implement regression . . . . . . . . . . . . . . . 56

4.5 3D-CNN publications that implement regression . . . . . . . . . . . . . . 57

4.6 Publications that implement segmentation . . . . . . . . . . . . . . . . . . 59

5.1 Comparison 1D-CNN performance for different datasets (Adapted from [141]) 81

5.2 Comparison of regression algorithms metrics (Adapted from [141]) . . . . 83

5.3 Comparison of in situ secchi depth measurements with kd_z90max predicted
values from C2RCC processor and Secchi disk depth from 1D-CNN model
(Adapted from [141]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Comparison of models on the train dataset . . . . . . . . . . . . . . . . . . 103

6.2 Comparison of models on the test dataset . . . . . . . . . . . . . . . . . . 103

7.1 CNN model comparison for FPP prediction on training dataset . . . . . . . 118

7.2 CNN model comparison for FPP prediction on testing dataset . . . . . . . 118

8.1 Comparison of Remote Sensing Methods for Burned Area Detection . . . . 138

9.1 IoU Scores Comparison of Different CNN Architectures . . . . . . . . . . . 146

9.2 Dice Coefficient Comparison of Different CNN Architectures . . . . . . . . 146

9.3 Computational Performance of CNN Architectures . . . . . . . . . . . . . 147

9.4 Comprehensive Performance Analysis of CNN Architectures . . . . . . . . 149

xiv



List of Figures

2.1 Electromagnetic spectrum divided into bands (Adapted from [14]) . . . . . 6

2.2 Interaction between solar energy and the Earth’s surface . . . . . . . . . . 7

2.3 Campus of the University of Split in four different spatial resolution . . . . 8

2.4 Examples of spectral resolution for the campus of the University of Split . . 9

2.5 Examples of radiometric resolution for the campus of the University of Split 10

2.6 Sensor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Example of atmospheric correction on Sentinel–2 imagery, credits: "Modi-
fied Copernicus Sentinel data 2024/Sentinel Hub" [29] . . . . . . . . . . . 14

3.1 Convolution operation on a 5×5 input image using a 2×2 kernel . . . . . 26

3.2 Kernel movement with a stride of one . . . . . . . . . . . . . . . . . . . . 27

3.3 Zero padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Base architecture of convolutional neural network . . . . . . . . . . . . . 29

3.5 Overfitting and Underfitting of Data (Adapted from [77]) . . . . . . . . . . 32

3.6 1D–CNN model architecture for spectral feature extraction in MSI data . . 33

3.7 2D–CNN model architecture for spatial feature extraction in MSI data . . . 34

3.8 3D–CNN model architecture for spatial-spectral feature extraction in MSI
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 4D–CNN model architecture for spatial-spectral feature extraction in time-
series MSI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Flow diagram illustrating the publication identification and screening pro-
cess following the PRISMA guidelines (template is reused from Page et al.
[101] with CC BY 4.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Distribution of publications . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Heatmap of the most frequent journals of publications focusing on CNN ap-
plications in multispectral imagery . . . . . . . . . . . . . . . . . . . . . 43

xv



4.4 Heatmap of the most frequent conferences of publications focusing on CNN
applications in multispectral imagery . . . . . . . . . . . . . . . . . . . . 44

4.5 Publication Trends Over Time for Each 1D, 2D, 3D and 4D–CNN . . . . . 45

4.6 The word cloud of the most frequently used words in abstracts . . . . . . . 45

4.7 Publication Distribution for each CNN by Domain . . . . . . . . . . . . . 46

4.8 Publication Distribution for each CNN by Satellite . . . . . . . . . . . . . 46

4.9 Satellite usage across different domains for 1D–CNN . . . . . . . . . . . . 47

4.10 Satellite usage across different domains for 2D–CNN . . . . . . . . . . . . 48

4.11 Satellite usage across different domains for 3D–CNN . . . . . . . . . . . . 49

4.12 Satellite usage across different domains for 4D–CNN . . . . . . . . . . . . 49

4.13 Number of publications using different machine learning techniques by each
CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.14 Accuracy of CNNs using classification across different domains . . . . . . 51

4.15 F1–scores of CNNs using classification across different domains . . . . . . 53

4.16 Ontology visualization generated with WebVOWL . . . . . . . . . . . . . . 63

5.1 Map of the Adriatic Sea showing the locations of Secchi disk depth measure-
ments (shown in Plate Carrée projection; adapted from [141]) . . . . . . . 69

5.2 Probability distribution of the measured ZSD values in the Croatian, Slove-
nian, and Secchi Disk Project datasets (Adapted from [141]) . . . . . . . . 70

5.3 Statistical characteristics of in situ ZSD (m) through years . . . . . . . . . . 70

5.4 Cloud and land mask based on band Oa17 values for the area of the Kaštela
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1. INTRODUCTION

The expansion of space technologies and their influence on various industries has been evi-
dent since the beginning of the space age. Historical launch data from SpaceTrack’s public
catalog [1] reveals a large increase in the number of satellite launches since 1957, when the
space age began. During the Cold War, the United States and Russia (the former Soviet
Union) dominated space launches, with Russia peaking at nearly 100 annual launches in the
1980s, while the United States showed early dominance in the 1960s. Nowadays, we witness
a large number of launches, particularly from the United States, reaching over 120 launches
per year (2024), with multiple satellites being deployed in a single launch. China has also
emerged as an important factor in the space industry, with more than 60 launches per year.

In the last two decades, the number of space companies has grown exponentially [2].
In addition to large independent agencies, such as the National Aeronautics and Space Ad-
ministration (NASA) and the European Space Agency (ESA), private companies such as
SpaceX [3] and PlanetLabs [4] are taking on a significant role in the space scene. Space-
Track reports that the current number of active satellites has reached 10 700. According to
astronomer Jonathan McDowell’s data from November 20, 2024 [5], SpaceX alone oper-
ates 6 426 Starlink satellites in orbit, of which 6 371 are operational. Starlink satellites are
designed to provide low-cost Internet and mobile phone services to remote locations.

The growing number of satellites produces huge amounts of data about the Earth, creating
new opportunities for the development of various applications. Among them are the digital
twins of the Earth that serve to monitor, predict, and assess changes in the environment
[6]. Artificial intelligence (AI), which is currently increasingly popular and widely used,
has emerged as a promising solution for handling large datasets. The volume, variety, and
velocity of satellite data, also known as the "3V’s of big data", exceed traditional processing
capabilities and require a faster and more efficient way of analysis [7].

Development of parallel computer architecture, advanced AI algorithms, and increased
data storage capabilities improved analysis of big datasets. GPU technology, which was
originally made for computer graphics and the gaming industry, has become widely used
in the processing of satellite images. For example, NVIDIA’s CUDA architecture can use
thousands of processing cores (GPUs) to simultaneously process different parts of satellite
images, which significantly reduces the time required for complex operations [8].

Compared to traditional methods, AI algorithms have proven more suitable in remote
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sensing applications due to their ability to identify complex patterns and handle non-linear
relationships in data. However, in addition to efficiently processing huge amounts of data,
AI algorithms must provide reliable and interpretable results that can influence important de-
cisions (e.g., political) and scientific research. Consequently, there is an increasing emphasis
on explainable AI, especially convolutional neural networks (CNNs) that form the backbone
of many remote sensing applications. For instance, CNNs have shown promise in addressing
diverse remote sensing challenges, such as feature extraction from satellite imagery and envi-
ronmental monitoring. For now, CNNs are not fully explainable because it is still difficult to
explain how a model manages to learn from features and achieve reliable predictions, which
is why the CNN mechanism is often called a "black box". Therefore, it is necessary to work
on the explainability of CNN models to ensure trust and reliability in their operations [9,10].

This dissertation uses a methodological approach to address the challenges of artificial
intelligence in remote sensing, with a particular focus on CNN models. The main focus is
on the analysis of different degrees of CNN and how they affect the processing of remote
sensing data. The research specifically studies the effects of different CNN architectures
(1D, 2D, 3D and 4D) and determines for which tasks certain architectures are most suitable.
The goal is to help scientists and experts to better understand the capabilities and limitations
of each CNN degree in the field of remote sensing, which will allow a better selection of
CNN architectures for specific task.

1.1. Research Hypothesis

This dissertation investigates the relationship between CNN architectures and their applica-
tions in remote sensing. The main hypothesis is the following:

• (H0) selecting the appropriate degree of a convolutional neural network (CNN)
based on the application domain and the characteristics of remote sensing data
can result in a reliable model for monitoring Earth changes.

To gain a deeper understanding, additional hypotheses have been proposed. Hypothesis
H1 focuses on a systematic review of publications related to using different CNN degrees in
remote sensing and is defined as:

• (H1) It is possible to gain insights into the suitability of 1D, 2D, 3D and 4D CNNs
for addressing specific remote sensing problems.
Based on a systematic review of existing works, it is possible to get insights into differ-
ent CNN architectures applied to remote sensing data. Considering the large amount
of remote sensing data, the review will be limited only to those publications that use
multispectral data. Those results can be represented with ontology, which will help re-
searchers to select an appropriate CNN architecture based on the application domain.
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Hypotheses (H2)-(H5) focus on case studies for different CNN architectures and are
defined as:

• (H2) It is possible to use 1D-CNN on Sentinel-3 OLCI satellite data to accurately
predict Secchi disk depth.
The Secchi disk is a tool to measure water clarity and its depth is assumed to be a point-
based parameter. The spectral features from satellite data are sufficient to achieve
satisfactory results and can be successfully identified by 1D-CNN.

• (H3) It is possible to detect roads by using a 2D-CNN model on Sentinel-2 satellite
data.
The roads are assumed to be objects in the spatial context of the observed area. There-
fore, the spatial features that can be identified in satellite imagery should be sufficient
to detect roads without depending on the spectral wavelength of each band.

• (H4) It is possible to predict fire propagation potential (FPP) by using a 3D-CNN
model on Sentinel-2 satellite data.
By using a 3D-CNN model, it is possible to learn and process the complex spatial-

spectral relationships within the satellite data. This enables the prediction of fire prop-
agation potential, which is often influenced by various factors such as vegetation type,
moisture content, and topography. These environmental factors are represented in the
satellite data through their distinct spatial and spectral characteristics.

• (H5) It is possible to perform land cover change detection by using a 4D-CNN
model on multi-temporal Sentinel-2 satellite data.
In particular, the assumption is that the model can detect the burned area after a fire
event. Based on the spatial-spectral-temporal features of the satellite imagery, the
model should be able to find spatial changes characterized by different spectral wave-
lengths (bands) through time.

Finally, hypothesis H6 is defined as:

• (H6) By comparing 1D, 2D, 3D and 4D CNN architectures for land cover segmen-
tation based on Sentinel-2 satellite data, a 3D-CNN architecture should prove to
be the best model for this problem.
Therefore, we hypothesize that a 3D-CNN architecture can better discriminate be-
tween land cover classes because of its ability to capture spatial patterns and spectral
features simultaneously.

1.2. Dissertation Outline

The doctoral thesis has a total of ten chapters. The introductory chapter presents the moti-
vation for this work, which lies in the development of the space industry and the increase in
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the amount of satellite data that creates the need for more efficient processing using artificial
intelligence. Also, this chapter defines the hypotheses of the doctoral thesis. The follow-
ing one is Chapter 2, which provides brief theoretical foundations of remote sensing, with
an emphasis on the electromagnetic spectrum, resolutions and types of sensors, basic data
preprocessing techniques, and an overview of satellite missions important for this research.
Building upon remote sensing fundamentals, Chapter 3 presents theoretical aspects of deep
learning in the context of remote sensing. This chapter describes image analysis techniques
used in remote sensing, CNN key concepts, and most commonly used layers in CNN archi-
tectures. Also, it includes important steps in the CNN training process and provides the main
concepts of 1D, 2D, 3D and 4D-CNNs. This is followed by chapters that present the main
research, contributions and results of this doctoral thesis.

Chapter 4 provides a systematic review of the available literature on the use of 1D, 2D, 3D
and 4D-CNN architectures on multispectral images. For this purpose, the PRISMA method-
ology was used, which provides a framework for objective literature analysis. The chapter
ends with an ontology and conclusions drawn from an extensive analysis of studies on the
applicability of individual CNN architectures for a specific task domain. The following chap-
ters present specific contributions of 1D, 2D, 3D, and 4D-CNN, which are quantitatively and
qualitatively evaluated. Chapter 5 explores the application of 1D-CNN for estimating Sec-
chi disk depth from Sentinel-3 OLCI data. The 1D-CNN architecture’s contribution lies in
effectively processing spectral information for a regression task. Chapter 6 demonstrates
the application of 2D-CNN for road detection using Sentinel-2 imagery and OpenStreetMap
data. The 2D-CNN architecture’s contribution is in effectively processing spatial informa-
tion for a classification task. Chapter 7 presents the application of 3D-CNN for predicting
fire propagation potential using Sentinel-2 imagery. The 3D-CNN architecture’s contribu-
tion lies in effectively processing both spatial and spectral information for a classification

task. The chapter also provides comparative analysis with 1D-CNN and 2D-CNN models
to demonstrate the advantages of 3D architecture in this application. As the final CNN case
study, Chapter 8 demonstrates the application of 4D-CNN for burned area detection using
multi-temporal Sentinel-2 imagery. The 4D-CNN architecture’s contribution lies in effec-
tively processing spatial-spectral-temporal information for a scene understanding problem,
with particular emphasis on analyzing the impact of different spatial patch sizes on model
performance. As a final contribution of this thesis, Chapter 9 presents a comparative analy-
sis of all four CNN architectures on a common land cover semantic segmentation task using
CORINE Land Cover data, providing both quantitative and qualitative assessment of their
performance.

The thesis concludes with Chapter 10, which summarizes all scientific findings and con-
tributions, and outlines potential directions for future research.
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2. REMOTE SENSING

This chapter presents the theoretical aspects of remote sensing as a basis for further discus-
sion. The first subchapter describes the electromagnetic spectrum, its ranges and the interac-
tions of radiant energy with the Earth’s surface in the context of remote sensing imagery. The
introduction is followed by an overview of spatial, spectral, radiometric and temporal reso-
lutions and how these affect the images acquired by remote sensing. The types of sensors are
then described and their categorization into active and passive sensors based on the principles
they use to detect electromagnetic energy. The next subchapter gives a brief overview of the
basic satellite missions and their characteristics. The chapter concludes with a description of
data preprocessing techniques related to the digital analysis of remote sensing data.

2.1. The Electromagnetic Spectrum

Remote sensing is the acquisition of information about the Earth’s land and water surfaces
by sensors installed on aircraft or satellites. These sensors receive electromagnetic energy
that is emitted or reflected by the observed surface [11]. Electromagnetic energy captured
by sensor can be characterized by its frequency or wavelength. In the field of remote sens-
ing, it is common to define regions of the spectrum based on wavelength, often using mi-
crometers (1× 10−6m, µm) and forming the electromagnetic spectrum. Figure 2.1 shows
the electromagnetic spectrum divided into discrete regions of continuous wavelengths called
wavebands or bands. The visible region consists of a very small portion of the spectrum,
only 0.4 to 0.7 µm and can be sensed by human eyes. It can be used for land cover mapping.
This region can be further divided into three primary colors: blue (0.4 to 0.5 µm), green (0.5
to 0.6 µm), and red (0.6 to 0.7 µm) band. Besides the visible region, there are several regions
of the electromagnetic spectrum of interest in remote sensing such as the ultraviolet (UV)
spectrum (0.30 to 0.38 µm), the infrared (IR) spectrum (0.72 to 15 µm) and microwaves (>
1 mm) [12]. The UV region covers the shortest wavelengths that are of practical use for Earth
observation because it is largely scattered by the Earth’s atmosphere. Visible UV radiation is
emitted, for example, only by rocks and minerals. The infrared spectrum can be divided into
the near–infrared (NIR) region, which is relevant for discriminating green vegetation and its
health; the mid–infrared (MIR) region, which is useful for estimating soil and vegetation
moisture contents and detecting high-temperature sources; and the thermal infrared (TIR)

5



Chapter 2: REMOTE SENSING

region, which is commonly used to map surface temperatures. The microwave region has
very long wavelengths that are not affected by atmospheric conditions (clouds, smoke, dust).
Additionally, microwaves can penetrate to various depths of forest canopies and can be used
in soil moisture and surface roughness analyses. Usually, a remote sensing instrument is
designed to operate in one or more bands taking into account the characteristics of the study
area [13].

Figure 2.1. Electromagnetic spectrum divided into bands (Adapted from [14])

Electromagnetic waves that interact with the Earth’s atmosphere and surface can be re-
flected from its surface, absorbed and/or transmitted through its surface. Reflection, absorp-
tion and transmission will depend on the nature of the surface (material type and condition),
the energy’s wavelength and the angle of illumination. The relationship among these inter-
actions can be defined using the principle of energy conservation [15]:

EI(λ) = ER(λ)+EA(λ)+ET (λ) (2.1)

where λ represents the wavelength, EI is the incident energy, ER is the reflected energy,
EA is the absorbed energy and ET is the transmitted energy. The reflectance characteristics of
the Earth’s surface can be quantified by measuring the proportion of incident energy and re-
flected energy often called Top–of–Atmosphere (TOA) radiance. It is defined as the relative
brightness of a surface measured within a specific wavelength interval and is referred to as
spectral reflectance Rrs(λ) =

ER(λ)
EI(λ)

commonly expressed as a percentage [16]. Transmission
refers to the radiation passing through a medium without significant attenuation. A measure
of the medium’s ability to transmit energy is called transmittance. Absorption energy loss
is caused by atmosphere which prevents or absorbs energy at a given wavelength. The most
efficient absorbers of solar radiation are water vapor, carbon dioxide and ozone [12].

Figure 2.2 shows the path of solar radiation traveling at the speed of light (3×108 m/s),
as it reaches the satellite’s sensors. It can be noted that the incident solar radiation must
pass through the atmosphere twice. It is affected by the permeability of the atmosphere,
which depends on the physical properties of gases and the number of suspended particles
and several physical processes (scattering, absorption and refraction).
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Figure 2.2. Interaction between solar energy and the Earth’s surface

2.2. Sensor Resolution

Onboard sensors in remote sensing are capable of snapshooting larger area at a time with
a predefined resolution. The resolution of a sensor refers to its ability to distinguish infor-
mation, i.e. how well it records the fine details of the observed area [17]. It is important
to consider the resolution of the sensor as an overall system rather than focusing on its in-
dividual components. Image resolution also depends on ground features, atmospheric con-
ditions, lighting and the expertise of the image interpreter. In the scope of remote sensing
image resolution can be categorized into spatial, spectral, radiometric and temporal resolu-
tion [12, 13, 18]. Each type of resolution is described in more detail in the following subsec-
tions.

2.2.1. Spatial Resolution

Spatial resolution refers to the smallest object that can be resolved by the sensor, or the size of
the area used for the sensor’s instantaneous field of view (IFOV). The IFOV is defined as the
angular section observed by the sensor from which the sensor receives the energy at a given
time. This means that spatial resolution depends on sensor precision and satellite distance
from the Earth. The most common measure of the spatial resolution of remote sensing data
is the pixel size, which is usually expressed in metres. Figure 2.3 shows the scene of the
campus of the University of Split in Croatia for four different spatial resolutions (1 m, 10 m,
30 m and 100 m). It can be seen that the larger the pixel, the lower the spatial resolution.
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(a) 1 m (b) 10 m

(c) 30 m (d) 100 m

Figure 2.3. Campus of the University of Split in four different spatial resolution

2.2.2. Spectral Resolution

Spectral resolution refers to the ability of a sensor to distinguish finer wavelengths. It is de-
termined by the number of bands and their spectral bandwidths. If a sensor has larger num-
ber and narrower range of spectral bands, it can better distinguish different features. Earth
observation satellites equipped with multispectral sensors offer a wide range of bands, usu-
ally a panchromatic (PAN) band and bands in the visible–near–IR or thermal–IR spectrum.
Sensors with high spectral resolution are commonly referred to as hyperspectral sensors.
They usually have a better detection capability as they contain hundreds of spectral bands
in continuous ranges. Figure 2.4 shows an example of spectral resolution for the scene on
the campus of the University of Split. It can be seen that a grayscale image with one band
does not provide much information, while an image with three bands, namely red, green
and blue (RGB), can distinguish different objects in the scene (e.g. roofs, vegetation and
playgrounds).
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(a) One band - gray-scale image (b) Three bands - color image

Figure 2.4. Examples of spectral resolution for the campus of the University of Split

2.2.3. Radiometric Resolution

Radiometric resolution refers to the sensitivity of the sensor, i.e. its ability to measure and
distinguish electromagnetic energy represented by different radiation intensities within the
same spectral band. It is defined as the range of values digitally encoded by the sensor. The
number of bits per pixel is used to store the radiance as digital numbers (DN). Figure 2.5
shows the radiometric resolution for the University of Split campus in an 8-bit image, which
has 28 or 256 possible values per pixel (i.e. 0–255), and in a 2–bit image, which has only 22

or 4 possible values per pixel (i.e. 0–3). It is noticeable that some details are missing in the
2–bit image. Thus, when the radiometric resolution of a sensor is higher, it is more sensitive
to detecting small differences in reflected or emitted energy.

2.2.4. Temporal Resolution

Temporal resolution is a measure that refers to the frequency with which the sensor revisits
the same part of the Earth’s surface. Usually, days are used as the unit of temporal resolution
for most satellites. Satellites with frequent revisits are considered to have a high temporal
resolution. In addition, the temporal resolution can be influenced by the orbital characteris-
tics of the satellite, the field of view of the sensor and the atmospheric conditions, as some
sensors cannot detect the surface below the clouds. Furthermore, the temporal resolution
depends on the targets that the sensor is tracking. For example, in the case of data collected
by a meteorological satellite sensor, the data should be updated at short time intervals (e.g.
15 to 30 minutes) to take into account the dynamics of the observed phenomena.
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(a) 8-bit image (256 intensity levels) (b) 2-bit image (4 intesity levels)

Figure 2.5. Examples of radiometric resolution for the campus of the University of Split

2.3. Sensor Types

The classification of sensors in remote sensing is generally based on their functional principle
into active and passive sensors (Figure 2.6). Active sensors can provide an energy source,
i.e. generate an energy pulse in the direction of the target of interest and detect the reflection
of the observed target. Passive sensors can measure electromagnetic radiation originating
from an external source, e.g. energy reflected or emitted from solar radiation, the Earth’s
surface or the atmosphere. There are different types of remote sensing images for the sensor
types used, such as panchromatic, multispectral, hyperspectral and Synthetic Aperture Radar
(SAR) images [19,20]. This subsection describes the characteristics of some commonly used
instruments for active and passive sensors.

2.3.1. Active Sensors

Active sensors usually operate in the microwave part of the electromagnetic spectrum, which
allows them to measure the reflection of the observed area without the influence of the atmo-
sphere and solar light.

Radar

Radar or "Radio Detection and Ranging" is the most commonly used active sensor. It emits
electromagnetic energy in the wavelength range from 0.1 cm to 1 m and detects the reflec-
tions scattered back from the observed area, which provide information about the target. The
pixel coefficient in the radar image represents the backscatter coefficient of the target, and its
value increases with the strength of the received signal. With a sufficiently high resolution,
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(a) Active Sensor (b) Passive Sensor

Figure 2.6. Sensor Types

the radar can recognize the size and shape of the target. However, to increase the observation
altitude of the object and achieve sufficient spatial resolution, antennas of enormous size are
required, which is a significant disadvantage of this approach. This problem can be solved
by using virtual antennas that synthesize "longer" antennas, a technique called Synthetic
Aperture Radar (SAR) [13, 21].

SAR

SAR or "Synthetic Aperture Radar" is a radar system that has a synthetic aperture and is
based on "augmenting" the length of the antenna, not in the physical sense, but by using the
relative forward motion of a short antenna towards the target area and the Doppler effect. The
Doppler effect is the change in wave frequency as a function of the relative velocities of the
transmitter and the reflector. SAR uses the Doppler information to calculate the frequency
shift to determine the position and scattering characteristics of the target. Signals that are
backscattered over a certain time interval during the recording of an area are stored and
subsequently processed so that the recorded elements can be distinguished and an image of
the observed area can be reconstructed [11, 22].

LiDAR

LiDAR or "Light Detection And Ranging", uses a laser to measure the distance between an
object and the scanner using coherent light, and a mechanical optical mount to precisely scan
the laser across the scene. The scanner also needs to know where it is in order to know the
position of features in the world. In addition to estimating the brightness of the backscatter,
the LiDAR sensor can also measure the angular position, frequency change and time of the
reflected pulses. One of the advantages of LiDAR sensors is their speed, which can detect
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tens of thousands to more than a million positions per second [12, 23].

2.3.2. Passive Sensors

Passive sensors used in remote sensing usually operate in the visible, infrared, thermal in-
frared and microwave regions of the electromagnetic spectrum.

Radiometer

A radiometer is a sensor that measures electromagnetic radiation with high radiometric reso-
lution in the visible, infrared, or microwave regions of the electromagnetic spectrum [18]. It
quantitatively measures the intensity of electromagnetic radiation in one broad spectral band
(single-band radiometer) or in only a few bands (multi-band radiometer) [24].

Hyperspectral radiometer

A hyperspectral radiometer captures the reflected energy in hundreds to thousands of con-
tinuous narrow spectral bands in the visible, near–infrared and mid-infrared regions of the
electromagnetic spectrum [25]. The high spectral resolution of the sensor makes it possible
to distinguish details of the examined objects in a specific range. This is achieved on the
basis of the spectral response of the observed objects in each of the narrow bands of the
electromagnetic spectrum [26].

Spectrometer

A spectrometer is a sensor used for detecting, measuring, and analyzing the spectral con-
tent of incident electromagnetic radiation [26]. Four characteristics used to measure the
spectral response of a spectrometer are: spectral range, spectral sampling interval, spectral
bandwidth, and signal-to-noise ratio (SNR) [27]. The spectrometer measures the radiance
in many narrow spectral bands, often from the visible (VIS) part to the short–wave infrared
(SWIR) part of the electromagnetic spectrum. This sensor is characterized by high spectral
resolution but a low radiometric resolution compared to a radiometer [24].

2.4. Data Preprocessing Techniques

Most of the data collected through remote sensing of the Earth must undergo basic process-
ing from the moment the images are received on Earth to the moment the user loads them
into their computer and they become usable. In the context of digital analysis of remote sens-
ing data, two main image preprocessing operations are performed, namely radiometric and
geometric image processing. In addition to these operations, this subsection describes the
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common preprocessing steps in digital image processing, including atmospheric correction,
image enhancement and data fusion.

2.4.1. Radiometric Preprocessing

Radiometric calibration removes radiometric distortions in remote sensing images to ensure
the most accurate representation of ground conditions. It converts recorded voltages or dig-
ital numbers (DN) into absolute values of radiance or reflectance. The radiance values of
the image are adjusted to eliminate distortions caused by sensor failures or atmospheric in-
terference. When observing the Earth’s surface with visible or near–visible radiation, each
sensor records a mixture of both types of brightness. The brightness that is of interest for
remote sensing is the brightness derived from the Earth’s surface, and the brightness that
"interferes" with the image brightness value is the brightness of the atmosphere itself. For
example, a digital radiance value of "62" may result partly from a surface reflectance of "50"
and partly from atmospheric scattering of "12". The above-mentioned brightnesses are diffi-
cult to distinguish from each other. Therefore, it is necessary to identify and separate them
using atmospheric correction so that the main analysis can focus on examining the exact
surface of the brightness. This means that the DNs need to be converted into actual sur-
face brightness values so that consistent and accurate measurements can be made to detect
changes in climate characteristics and environmental conditions [12, 28].

2.4.2. Atmospheric Correction

As mentioned in the Section 2.4.1, any sensor that observes the Earth’s surface in the visible
or near–visible part of the electromagnetic spectrum detects two types of radiation, one of
which is radiation from the atmosphere itself. Therefore, the focus of atmospheric correction
is on images taken in the visible and near–infrared parts of the spectrum, as radar images are
not affected by clouds, precipitation and other atmospheric conditions. Clouds in the atmo-
sphere block information about the earth’s surface, so different methods are used for their
detection and their corresponding shadows. Mainly the threshold method, atmospheric radi-
ation models and different statistical methods are used to create a cloud mask of the observed
area. In addition to clouds, the quality of optical images is also influenced by aerosols and
water vapor, which scatter and absorb the radiation reflected from the surface. The aerosol
distribution mainly affects short–wave signals, while water vapor affects near–infrared sig-
nals. According to the authors of [18], atmospheric correction mainly consists of two parts:
1) estimation of atmospheric parameters and 2) determination of surface reflectance. Fig-
ure 2.7 shows the atmospheric correction of a Sentinel–2 satellite image with the Sen2Cor
processor.

Many atmospheric correction algorithms are developed for a specific satellite. For ex-
ample, the Sen2Cor processor developed by European Space Agency (ESA) is used for
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(a) Level–1C – non-atmospherically corrected (b) Level–2A – atmospherically corrected

Figure 2.7. Example of atmospheric correction on Sentinel–2 imagery, credits: "Modified
Copernicus Sentinel data 2024/Sentinel Hub" [29]

the atmospheric correction of Sentinel-2 satellite images. The aim of the Sen2Cor pro-
cessor is to correct the Sentinel–2 Level–1C Top–of–Atmosphere (TOA) products from at-
mospheric effects to obtain a Level-2A Bottom-of-Atmosphere (BOA) product. To detect
clouds, Sen2Cor uses the Scene Classification (SCL) module, which uses a set of spectral
reflectance thresholds, ratios and indices such as the Normalised Difference Snow Index
(NDSI) and the Normalised Difference Vegetation Index (NDVI) for each pixel and all spec-
tral bands except B06, B07 and B09. Sen2Cor performs the atmospheric correction using
a set of so-called look-up tables (LUT) generated by the library libRadtran for the calcula-
tion of solar and thermal radiation in the Earth’s atmosphere [30]. There are atmospheric
correction processors intended for the correction of images from different satellites. For
example, the MACCS–ATCOR Joint Algorithm (MAJA) processor is used for the atmo-
spheric correction of images from the Formosat–2, Landsat, VENµS and Sentinel–2 satel-
lites. MAJA is a spectral-temporal method consisting of two components, namely the Multi-
sensor Atmospheric Correction and Cloud Screening (MACCS) algorithm and modules of
the Atmospheric and Topographic Correction (ATCOR) software. To detect low clouds,
the MAJA processor uses a composite reference image containing pixels without clouds to
check whether the blue and red spectral bands of the observed image have exceeded the de-
fined threshold and whether there is a low correlation between the reflections of neighboring
pixels [31]. One of the best known processors for the purpose of atmospheric correction of
water images in land and coastal areas is the Case 2 Regional CoastColour (C2RCC) pro-
cessor. The C2RCC algorithm is based on a series of neural networks trained on a simulated
data set with TOA reflections. The mentioned algorithm generates Case–2 products con-
taining inherent optical properties, absorption and scattering of different particles as well as
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relevant optical concentrations (e.g. phytoplankton pigment, total suspended solids and yel-
lows). It is most commonly used with images acquired by the Sentinel–3 OLCI, Sentinel–2
MSI, Landsat–8 OLI and MERIS sensors [32].

In addition to the algorithms developed for the target satellite, there are those devel-
oped specifically for atmospheric correction of satellites recording in a specific range of
the electromagnetic spectrum, such as MODerate resolution atmospheric TRANsmission
(MODTRAN), the 6S model [33] and Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) [34]. MODTRAN is one of the better known and widely used atmo-
spheric correction algorithms. It was developed for modeling atmospheric propagation in the
range from the ultraviolet to the infrared part of the electromagnetic spectrum. MODTRAN
solves the radiative transfer equation, i.e. the phenomenon of energy transfer in the form of
electromagnetic radiation, which includes the effects of absorption, emission and scattering
of molecules and particles, surface reflections and emissions, solar or lunar illumination and
spherical refraction [35].

Atmospheric correction is certainly one of the most important steps in the preprocess-
ing of remote sensing images. This chapter gives a brief overview of the commonly used
atmospheric correction algorithms. It is important to emphasise that there is still no uniform
algorithm for all remote sensing images. Therefore, this area is still an interesting topic
for many researchers, considering that even the smallest failure in the algorithm can lead
to incorrect results, which in turn leads to poor performance of machine and deep learning
algorithms in classifying and recognising certain objects and phenomena in images.

2.4.3. Geometric Preprocessing

Geometric processing means the creation of planimetrically correct versions of images ob-
tained by remote sensing. No image captured by a sensor can fully reflect the true charac-
teristics of the landscape. In addition, many factors such as variations in platform height,
position, velocity, rotation and curvature of the Earth can distort the geometric properties of
the data. Some of the mentioned distortions are systematic and can be corrected by analyzing
the properties of the sensor or the platform, while others are random and must be corrected
by using ground control points (GCPs). GCPs represent locations in the input image that can
be precisely located on the ground and on planimetrically accurate maps. The goal of geo-
metric processing is to match remote sensing images with other images and maps to make
them suitable for measuring distance and area [12, 18].

2.4.4. Image Enhancement

Image enhancement is the process of emphasizing or improving the visual appearance and
characteristics of digital images, such as edges or contrast. Enhancement does not increase
embedded information and data capacity and is often only successful for a specific purpose
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and may be inappropriate for another image or purpose. In addition, image enhancement
enables the identification of real and virtual objects that are visible on satellite images but
sometimes do not appear, e.g. due to the shadows cast by trees, buildings, mountains and
the like. Image enhancement techniques can be divided into three broad categories: spatial
domain methods, frequency domain methods and color enhancement [12, 36].

2.4.5. Data Fusion

Data fusion refers to processes in which images of a particular scene with different resolu-
tions, originating from two or more sensors, are combined to create an interpretation of the
scene that cannot be obtained from a single sensor. Thus, the limitation of one sensor can
be overcome by combining images taken at the same or at a different time, with different
spectrum, radiometric calibration or spatial resolution, depending on the characteristics of
the individual sensors with which the images were taken [37]. According to Pohl and Van
Genderen (1998) [38], the fusion of remote sensing data can be divided into three different
levels: pixel level, feature level and decision level. Pixel–level data fusion aims to improve
the spatial information in multispectral images by using high resolution panchromatic im-
ages. In feature–level data fusion, different features (e.g. edges, lines) are extracted from
different data sources and then fused into one or more feature shapes to replace the origi-
nal data. In decision–level data fusion or interpretation–level fusion, the input images are
processed individually for information extraction to generate feature vectors, which are then
subjected to pattern recognition to complete the feature description of the targets.

2.4.6. Processing Levels

Most remote sensing data requires at least minimal processing before it can be used. Vari-
ous data providers have adopted a common set of processing levels to describe the type of
image processing and to enable users to more easily select the appropriate level for their
project. The processing levels are hierarchical, meaning that higher–level data starts with the
processing involved in the images of the previous level and adds other features to them.
Raw and corrected remote sensing images can be classified into data products at different
levels, namely [39, 40]:

• Level–0 – represents raw instrument and payload data, just as it was collected at the
sensor at full resolution, with any or all communication artifacts removed (e.g. du-
plicate data or communications headers). Since some basic data processing needs to
be applied before it can be used, this kind of data will generally not be distributed to
users, unless the user is studying the sensor device and not necessarily the features of
the Earth.

16



Chapter 2: REMOTE SENSING

• Level–1A – represents data over which radiometric correction has been applied and de-
tector variations within the sensor have been removed. The data are raw and displayed
in full resolution, time-referenced and marked with auxiliary information containing
radiometric and geometric calibration coefficients.

• Level–1B – represents images over which corrections have been applied for varia-
tions such as distortions in image geometry caused by scan line misalignment or non-
uniform pixel sizes. The applied corrections improve the geometric quality of the
image, which is highly desirable for their further use and processing.

• Level–2A – represents enhanced versions of Level–1B images that are systematically
mapped to a standard cartographic map projection based on a prediction of where the
satellite was when the image was taken. With some satellite data, such as Sentinel-2
satellite images, this level of processing also includes scene classification and atmo-
spheric image correction.

• Level–2B – presents precisely georeferenced images, which undergo a process of ge-
ometric correction or image correction, the image analyst positions the image on the
existing base map by selecting pairs of well-defined GCP points from the observed
image and the base map. The positional accuracy of a Level–2B image generally cor-
responds to the spatial resolution of the source data (e.g. 30 m for Landsat images).

• Level–3A – useful in the case of images that represent high relief, so in addition to
manually locating GCP points, it is necessary to provide a digital relief height model
(DEM) in order to take into account relief displacement at different heights. This
process is generally called orthorectification.

• Level–3B – represents images with the same attributes as Level–3A scenes, but cov-
ering a larger area, i.e. scenes that are combined into a mosaic.

2.5. Overview of Satellite Missions

Satellite missions consist of one or more satellites that are launched into space by rockets and
can orbit the Earth for 5 to 12 years in a predefined orbit [24]. Common critical requirements
that every satellite mission should fulfill are: coverage or response time, resolution, sensi-
tivity and lifetime in orbit. The coverage of the satellite mission refers, for example, to the
number of satellites used, the communication architecture, the field of view of the useful ter-
rain and the altitude. The resolution depends on the size of the instruments, the altitude and
the position control. Sensitivity relates to payload size, complexity, processing and thermal
control. The lifetime of a satellite mission in orbit depends on weight, component selection,
power budget and propulsion [41].
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According to Space-Track.org’s public catalog (as of 16 November 2024), there are cur-
rently more than 10,700 active satellites orbiting Earth among a total of 47,000 tracked ob-
jects in space [1]. Given the number of active satellites in orbit, this thesis only provides an
overview of the satellites that are of interest for future research and whose data is publicly
available. As part of the ESA Copernicus program, the European Space Agency (ESA) has
developed a "family" of satellites called Sentinel, which consists of a total of seven satellite
missions with radar and multispectral instruments to detect and monitor land, oceans and the
atmosphere [42]. This section describes the theoretical aspects of the radar satellite mission
Sentinel–1 and the two multispectral satellite missions Sentinel–2 and Sentinel–3.

The Sentinel-1 mission currently operates with Sentinel-1A (launched 2014) using syn-
thetic aperture radar (SAR) in the C-band spectrum. Following Sentinel-1B’s mission end in
December 2021, Sentinel-1C is scheduled for launch on December 3, 2024, with Sentinel-
1D planned for late 2025 to replace Sentinel-1A [43]. he two main products of Sentinel–1
are Single–Look Complex (SLC) images and Ground Range Detection (GRD) images. SLC
images consist of focused SAR data containing the full phase and associated complex data.
These images are georeferenced using the satellite orbit and position data at the time of ac-
quisition and corrected for terrain obliquity. GRD images contain generalized focused SAR
data projected into the WGS84/UTM coordinate system using an ellipsoidal model. These
images have approximately square pixels and less noise, but lower spatial resolution than
SLC images. The advantage of radar is the ability to perform remote sensing and observa-
tion regardless of atmospheric conditions, as the microwaves penetrate through fog, rain and
clouds [44].

The Sentinel–2 mission uses the MSI (Multispectral Imager) instrument mounted on two
identical satellites, Sentinel–2A and Sentinel–2B, to monitor the Earth’s surface. The satel-
lite captures images in 13 broad bands, ranging from visible (VIS), near–infrared (NIR),
vegetation red edge to short–wave infrared (SWIR) bands. The spatial resolution is 10 m,
20 m and 60 m, depending on the spectral band. The two satellites are in the same sun-
synchronous orbit, but on diametrically opposite sides, ensuring a revisit time of five days
in the equatorial region. The satellite data from the Sentinel–2 mission can be used, for
example, for monitoring forests and vegetation, water management, climate change, risk
management (e.g. floods and forest fires) or urban mapping [45, 46].

The Sentinel–3 mission uses several instruments for global environmental monitoring,
including two important optical instruments: the Ocean and Land Color Instrument (OLCI)
and the Sea and Land Surface Temperature Radiometer (SLSTR). The OLCI is a sensitive
optical instrument consisting of 21 spectral bands designed to capture the color of ocean and
land surfaces. The SLSTR instrument measures the surface temperature of oceans, land and
ice. It collects data in nine spectral bands, three in the visible and near–infrared regions,
three in the short–wave infrared region, one in the mid–infrared region, and two in the ther-
mal infrared region. The spatial resolution of Sentinel–3 satellite is 300 m, 500 m or 1 km,
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depending on the spectral band. In addition, two special channels enable the detection of fire.
Two identical satellites, Sentinel–3A and Sentinel–3B, are currently active, which are in the
same orbit with a phase delay of 180 degrees. In this way, the mission enables a high degree
of availability of data products with a revisit time of less than two days at the equator [47].

Similar to the ESA, the US government’s National Aeronautics and Space Administration
(NASA) also operates numerous satellite missions for Earth observation. In the following
text, the Landsat–8 and MODIS satellite missions are described.

The Landsat–8 satellite was developed in cooperation between NASA and the US Geo-
logical Survey (USGS). It has two instruments: Operational Land Imager (OLI) and Ther-
mal Infrared Sensor (TIRS). The OLI instrument records in nine spectral bands in the visible
(VIS), near–infrared (NIR) and short–wave infrared (SWIR) spectral regions as well as in a
panchromatic band. Panchromatic and multispectral images are recorded with a resolution
of 15 meters and 30 meters respectively. This instrument can be used for a variety of applica-
tions such as cirrus cloud detection, coastal aerosol monitoring, active fires and water purity
measurement. The TIRS instrument uses two thermal bands in the thermal infrared region
and the collected data has a spatial resolution of 100 meters. This sensor makes it possible
to measure the temperature of the Earth’s surface [48].

MODIS (Moderate Resolution Imaging Spectroradiometer) serves as the primary instru-
ment on NASA’s Terra and Aqua satellites, which continue to operate in extended mission
phases. Terra maintains observations despite transitioning to reduced operations in 2023,
while Aqua operates in ’free-drift’ mode since December 2021 with expected operations un-
til September 2026. MODIS is a radiometer with 36 bands measuring in visible and infrared
region of electromagnetic spectrum in the wavelength range 0.4 to 14.5 µm. The spatial
resolution of Aqua and Terra MODIS is 250 m, 500 m and 1 km, depending on the spectral
band. Its data is used to create a wide range of products for the ocean (e.g., chlorophyll flu-
orescence, suspended solids, and organic matter concentrations), land (e.g., land cover type,
various vegetation indices, fires), and atmosphere (e.g., cloud mask, cloud optical thick-
ness). The missions’ complementary orbits (Terra in morning, Aqua in afternoon) enable
twice-daily global coverage [49–51].

Table 2.1 provides an overview of the satellites described above, including Envisat (no
longer operational) [52], PROBA-V (ended in 2020) [53], SPOT 6/7 and WorldView-2/3.
It should be noted that SPOT and WorldView satellites are commercial satellites. SPOT is
owned by Airbus Defence and Space, but has an agreement with ESA for the distribution of
the data products obtained from these missions, while the WorldView satellites are owned
by DigitalGlobe. The SPOT satellites are identical and each of them is equipped with two
identical New Astrosat Optical Modular Instruments (NAOMI) [54]. Both WorldView satel-
lites have panchromatic (PAN) and multispectral (MS) sensors, while WorldView-3 has two
additional SWIR and CAVIS (Clouds, Aerosols, Vapours, Ice, and Snow) sensors [55, 56].
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Table 2.1. Overview of satellites for remote sensing and their basic parameters

Agency Satellite
Sensor/

Instrument

Spatial

resolution

Temporal

resolution

(day)

Spectral

resolution

(bands)

Airbus

Defence

and Space

SPOT 6 and

SPOT 7
NAOMI

1.5m and

8m

twice

a day

5 (PAN,

RGB, NIR)

ESA

Sentinel-1 SAR 10-40m 12 C-Band

Sentinel-2 MSI
10m, 20m

and 60m
<= 5

13 (VIS,

NIR, SWIR)

Sentinel-3

OLCI 300m,

500m

and 1km

< 2 21 (VIS, NIR)

SLSTR < 4
11 (VIS, SWIR,

MWIR, TIR)

Envisat MERIS 300m <= 3 15 (VIS, NIR)

PROBA-V VGT-P
100m, 333m,

and 1km
<= 2

4 (SWIR, Blue,

Red, NIR)

NASA

Landsat-8
OLI,

TIRS

15m, 30m,

100m
16

11 (VIS,

NIR, SWIR,

PAN, TIR)

Aqua

MODIS

250m, 500m,

and 1km

daily;

reduced

operations

36 (VIS, NIR,

SWIR, MWIR,

LWIR)
Terra

DigitalGlobe

WorldView-2

NAOMI

PAN: 0.46 m

MS: 1.8m

up to

1.1 days

9 (VIS, NIR,

PAN)

WorldView-
3

PAN, MS,

SWIR: < 4m

CAVIS: 30m

daily

PAN: 1, VIS: 8,

SWIR: 8,

CAVIS: 12
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3. DEEP LEARNING

Deep learning is a subfield of machine learning within artificial intelligence that focuses
on creating deep neural network models capable of making accurate data–driven decisions.
These decisions are made by identifying patterns and extracting features from large data sets,
often referred to as Big Data [57]. This chapter describes convolutional neural networks
(CNNs), which are specialized deep neural networks for the task of image recognition and
processing.

The first section explores image analysis techniques in remote sensing and covers the
areas of image preprocessing, pixel–based classification, object–based classification, target
recognition, scene understanding and regression analysis. Following this, the subsequent
section describes the key concepts and principles that define how CNNs operate. Afterward,
the architecture of the convolutional neural network is described, including the details of
the layers. Following the architecture description, a section on the CNN training process
is provided, which consists of several important steps to reduce training time and improve
model accuracy. The last section discusses the architectures of 1D, 2D, 3D and 4D CNNs in
the context of remote sensing. In particular, their applications in analyzing spectral/temporal
data (1D), spatial data (2D), spectral–spatial data (3D) and spectral–spatial–temporal data
(4D) are discussed.

3.1. Image Analysis Techniques in Remote Sensing

Remote sensing data presents new challenges for deep learning. By studying the Earth as
an ever-changing system, it is possible to use modern technologies to create lasting records
that could help current and future scientific research. The application of deep learning algo-
rithms is now widespread in the world of geosciences, and experimental results confirm the
excellent performance of their application in the analysis of remote sensing big data. Despite
its great potential, deep learning cannot be directly applied to all remote sensing tasks. For
example, hyperspectral images contain a large number of spectral bands, which means that
a large number of neurons must be made available in a pre–trained network to analyze such
images. Besides the large amount of data, the problem that scientists face when applying
deep learning in remote sensing is the small number of labeled samples and the application
of a pre–trained network to data captured by different sensors.
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There are various approaches to analyzing remote sensing images. This section describes
image preprocessing, pixel-based classification, semantic segmentation, object-based clas-
sification, target recognition, regression analysis and scene understanding. Image prepro-
cessing improves image quality by using methods based on deep learning for subsequent
classification and recognition tasks. Pixel–based classification assigns labels to individual
pixels, while object–based classification divides the image into meaningful objects before
labeling. Target recognition and scene understanding use features extracted from objects and
raw digital pixel numbers (DN – digital numbers) from a database of high and low resolution
images. Continuous values, such as chlorophyll, can be predicted using regression analysis,
which provides quantitative assessments [58].

3.1.1. Image Preprocessing

Remote sensing images are not always immediately suitable for further analysis due to many
factors such as sensor limitation and atmospheric influence. In order to minimize these limi-
tations there is a need to preprocess remote sensing images to improve image quality before
further tasks such as classification and image recognition. Section 2.4 describes key pre-
processing techniques including radiometric and geometric processing, as well as common
digital image processing steps like atmospheric correction, image enhancement, and data
fusion. Furthermore, image preprocessing often involves techniques such as remote sensing
image restoration and pan–sharpening.

Remote sensing data restoration aims to recover images from their corrupted versions
and improve subsequent analysis. This process addresses the degradation caused by atmo-
sphere, imaging system artifacts such as speckles and striping, and instrument noise such
as thermal and quantization noise. Techniques such as denoising, despeckling, destriping
and deblurring are used to mitigate these effects and improve the interpretability of remote
sensing imagery [59].

Pan–sharpening technique combines high–resolution panchromatic images with lower-
resolution multispectral images to produce high-resolution multispectral images while keep-
ing important spectral features. Most algorithms work well when the images are acquired
in the same time with the same sensor and both the spatial and spectral information is pre-
served. However, when fusing multiple data, these techniques can improve spatial resolution
but often affect spectral consistency. Huang et al. [60] introduced a novel pan–sharpening
technique for preprocessing remote sensing images by using a stacked modified sparse de-
noising autoencoder (S–MSDA) to train the relationship between high–resolution and low–
resolution image patches. This deep learning–based approach has demonstrated superior
performance over traditional and state–of–the–art methods.
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3.1.2. Pixel–based Classification

Pixel–based classification categorizes a pixel based on its spectral information and the sim-
ilarities between the individual classes. Typically, multispectral data is used where feature
vectors of each pixel are extracted, consisting of grayscale values that are used as the nu-
merical basis for categorization. The specified feature vectors are then compared with the
prototype vectors of each class using the spectral information of the pixels.

Pixel–based classification reaches its limits when interpreting high–resolution scenes and
is therefore often used for low-resolution images, especially when objects are involved. The
reason for this is that a pixel cannot represent an entire object, making pixel–based classifi-
cation less effective for high–resolution images. The most common methods for pixel–based
classification are Minimum Distance/Nearest Neighbor Classifier, Parallelepiped Classifier,
Iterative Self–Organizing Data Analysis Technique (ISODATA) and Maximum Likelihood
Classifiers (MLC) [61].

3.1.3. Semantic Segmentation

Semantic segmentation in remote sensing enables pixel-level image classification, which is
critical for applications such as urban planning, disaster assessment, and crop monitoring.
Deep learning methods, particularly convolutional neural networks (CNN), attention mecha-
nisms, generative adversarial networks, and models based on data fusion, have advanced its
application in remote sensing tasks. Various architectural frameworks, such as fully convo-
lutional networks (FCN), U-Net and DeepLab, have made substantial contributions to this
field. In these approaches, CNNs learn to automatically extract hierarchical features and
perform end-to-end pixel-wise classification while preserving spatial context. Despite these
advances, challenges remain, including variability in image resolution and illumination, lim-
ited availability of pixel-wise labeled data, computational demands due to high-resolution
images, and difficulty in detecting small objects and fine edges [62].

3.1.4. Object–based Classification

Object–based image analysis is based on objects consisting of a large number of homoge-
neous pixels grouped in a meaningful way. Image objects reveal shape features, i.e. their
spatial distribution, which is necessary for classification. This method consists of two parts,
namely image segmentation and classification based on object features in the spectral and
spatial domain.

Unlike semantic segmentation which directly assigns class labels to pixels, traditional
segmentation algorithms merely group similar pixels into meaningful objects without knowl-
edge of their classes. It is a challenging task due to the mixed pixels and spectral similarity of
many land cover types. There are numerous segmentation algorithms in the literature, such
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as Fuzzy C-Means, Level Set and Watershed Transformation. Conventional segmentation al-
gorithms usually group pixels iteratively into regions based on predefined similarity criteria,
which are often difficult to determine and practically subjective. The result of image seg-
mentation directly affects the performance of subsequent classification tasks. Conventional
segmentation methods often do not provide a perfect partitioning of the image, resulting in
over or under–segmentation, with over–segmentation being more common.

Image objects are characterized and classified using a variety of features that include
color, texture, shape, and contextual properties in various forms. Spectral features such as
brightness, mean, standard deviation, soil–adjusted vegetation index (SAVI), normalized dif-
ference vegetation index (NDVI) and normalized difference water index (NDWI) are crucial
components in feature extraction. Shape features such as area, length, main direction and
shape index as well as texture features such as entropy calculated over multiple bands (red,
green, blue, near infrared) greatly enhance the classification process. Classification methods
often use both a nearest neighbor (NN) classifier, which uses user–defined pattern objects
for class assignment, and fuzzy membership functions, which describe feature characteris-
tics within predefined intervals [61, 63].

3.1.5. Target Recognition

Target recognition in remote sensing satellite imagery is a process that involves the identifi-
cation and classification of individual targets within a scene (e.g. objects, vehicles, people).
Image size, different lighting conditions and complex backgrounds can significantly affect
target recognition. Methods that rely on manual labeling and classification of features in
large scenes encounter efficiency and accuracy problems. In contrast, algorithms based on
deep learning have significantly improved the accuracy and speed of target detection and
recognition. They can be divided into two categories: regional and end-to-end target detec-
tion.

Algorithms based on regional detection (e.g. Region-based CNN or R–CNN and Fast R–
CNN) generate candidate images and classify them using CNNs, which improves detection
accuracy. However, they require more processing time as numerous suggestions of regions
are needed.

Algorithms based on end-to-end target recognition simplify the recognition process and
improve processing efficiency by converting target recognition into a regression problem and
integrating feature extraction, classification and localization into a single deep CNN. The
target recognition method is widely used in military applications, smart city construction,
land management and disaster management [64].
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3.1.6. Regression Analysis

Regression analysis in remote sensing uses the same basic concepts as regression in other ap-
plications. It is used with numerical dependent variables, so the strength and characteristics
of the relationship between the dependent variable and one or more independent variables
must be determined to better understand and predict the dependent variable. For example,
in a remote sensing task, the dependent variable might be chlorophyll concentration or the
probability of a natural disaster, while the independent variable might be a band or an index
(e.g. Normalized Difference Vegetation Index – NDVI).

When applying regression to remote sensing data, several steps are typically followed,
such as: collecting data on known instances of the dependent variable (such as plant or an-
imal species), selecting and defining independent variables, creating equations that describe
the relationship between the dependent and independent variables, and finally, by using equa-
tions and independent variables, it is possible to create a georeferenced map of the dependent
variable on the entire observed area [65].

3.1.7. Scene Understanding

Scene understanding refers to the perception of images obtained through remote sensing to
achieve effective analysis, recognition and representation of the geographic scene. In addi-
tion to perception, methods such as visual analysis, image processing and pattern recognition
are used to recognize patterns and features at different levels of abstraction. The goal is to ac-
curately recognize and understand different classes of objects in the scene and their complex
spatial relationships and occurence of event scenario in series of images.

Therefore, the scene understanding method uses a hierarchical approach ranging from
visual level details to the conceptual level, linking pixel–level information to abstract scene–
level concepts through semantic processing and reasoning. Identifying spatial structures
and relationships within scenes is a key aspect for discovering unique patterns that help to
classify and distinguish different types of scenes. Although remote sensing images provide a
large amount of information about a particular scene, they are often subject to change under
different acquisition conditions and need to be interpreted for accurate labeling and scene
analysis [66].

3.2. CNN Key Concepts

To better understand convolutional neural networks and their application, it is necessary
to define the fundamental concepts underlying their architecture. These key concepts in-
clude filters (or kernels), activation functions, stride and padding, which define the operations
within the CNN layers and the way the network processes and transforms the data.
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The parameters of the CNN layers consist of a set of learnable filters. Filters or channels
consist of kernels that usually have a small spatial dimension, but extend over the entire depth
of the input data and have three dimensions: Length (L), Width (W) and Depth (D). A kernel
is a two–dimensional tensor with width and length (W×L), where the usual sizes are 3×3,
5×5 and 7×7. These grids contain discrete numbers or values that are artificially generated
and serve as weights of the kernel at the beginning of the CNN training process, which are
adjusted in each training epoch. Increasing the number of filters can improve the CNN’s
ability to extract significant features, but also increases computational complexity [67].

Figure 3.1 illustrates a 5×5 input image with a 2×2 kernel sliding over it. At each
position, the dot product is computed between the kernel and the corresponding section of
the input matrix. Here is an example calculation of the first value of the output feature map:

(2∗1)+(0∗0)+(1∗0)+(3∗1) = 2+3 = 5

Figure 3.1. Convolution operation on a 5×5 input image using a 2×2 kernel

In deep learning, the input is passed from one neuron to the next through an activation
function and this process is repeated until the output layer is reached. During this process and
its repetition, the linear relationship is transformed into a non-linear relationship using the
activation function. The activation function improves the representational capability through
non-linear operations in CNNs and gives them the ability to perform complex calculations.
Activation functions are mainly divided into linear and non-linear activation functions. Lin-
ear activation functions are not commonly used in CNNs due to the discontinuous properties
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of their derivatives. Examples of non-linear activation functions are the Sigmoid, Tangent,
Softmax and Rectified Linear Unit (ReLU) functions. The ReLU function is the most com-
monly used today because it has a simpler definition of the function and gradient, avoids
the occurrence of gradient vanishing when applying the backpropagation algorithm, which
is the case for the Sigmoid and Tangent activation functions since their gradient is very close
to zero, except in the middle of the function, and it creates a so-called sparse representa-
tion, which means that the ReLU function can produce complete zero values for negative
inputs, while the Sigmoid and Tangent activation functions learn how to approximate a zero
output [68].

The stride is a parameter that defines the movement of the kernel or filter over the input
matrix that represents an image. It indicates how many rows and columns the kernel or filter
moves at each step, starting from the upper left corner of the input matrix. For example, a
stride of one moves the kernel by one pixel, as shown in Figure 3.2. A larger stride results
in a smaller output dimension of the matrix, which can effectively reduce the size of the
image and the amount of computation. However, this operation can result in loosing some
important information.

Figure 3.2. Kernel movement with a stride of one

Padding is a common technique used in CNN as it prevents the feature map from shrink-
ing at each layer, by adding a certain number of pixels to the edges of the input data. This
ensures that the size of the output data matches the size of the input data, usually using
a value of 0 or copying edge pixels to fill the matrix size (Figure 3.3). For example, if a
3×3×1 image is padded, it expands to a 5×5×1 matrix. When a 2×2×1 kernel is applied
over this padded image, the resulting feature map will have dimensions of 4×4×1. This
means that the output image has a larger dimension than the input image. If the same proce-
dure is performed without padding, the output could have a smaller dimension than the input
image and become a 2×2×1 image, which could result in loss of important information
about the edges [69].
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Figure 3.3. Zero padding

3.3. Architecture of CNN

A Convolutional Neural Network is a deep, feed-forward network developed by studying
the visual cortex of the brain with the aim of processing and recognizing images. The CNN
technique was developed in the 1980s and 1990s, but has become more widespread in recent
years due to increased computing power and the availability of large amounts of training
data [70]. CNN networks have a grid-like topology and are specialized for image recognition,
which can be visualized as a two-dimensional grid of pixels. In addition to visual perception,
they are also successfully used in other tasks such as speech recognition or natural language
processing (NLP) and time-related data, which can be visualized as a one-dimensional grid
with regular time intervals [71].

A CNN achieves better results in image recognition for complex tasks when its feature
extraction neural network has more layers, meaning when the neural network is "deeper,"
which significantly affects the training process. This type of network uses a mathematical
operation called ’convolution’, which is a specialized type of linear operation used instead of
general matrix multiplication in at least one layer of the CNN network. The feature extraction
neural network consists of a large number of pairs of convolutional layers and pooling layers.
Besides the feature extraction network for the input image, every CNN has a neural network
that classifies the image based on its features and generates the output [72].

Figure 3.4 shows the base architecture of a convolutional neural network. This archi-
tecture consists of five main components: an input layer, a convolutional layer, a pooling
layer, a fully connected layer and an output layer. CNN for specific task can have more than
one of each listed layers to achieve more deeper architecture. The process of transforming
input data into output through these layers is known as forward propagation. The following
sections briefly describe the most commonly used layers in the CNN architecture.
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Figure 3.4. Base architecture of convolutional neural network

3.3.1. Convolutional Layer

A convolutional layer is a core component of the CNN architecture that uses the mathemat-
ical convolution operation, usually denoted by an asterisk (∗), where the equation takes the
following form [71]:

s(t) = (x∗w)(t) (3.1)

where the first argument (x) is called the input and the second argument (w) is called the
kernel, while the output after applying the convolution is called the feature map.

Typically, a convolutional layer consists of a collection of convolutional filters or kernels,
where the input layer, which is usually an image represented as a multidimensional dataset,
is convolved using filters to produce an output feature map. The number of extracted features
increases with the number of convolution kernels in the layer and they vary depending on
which convolution kernel or filter is used.

3.3.2. Pooling Layer

The pooling layer selects only the most relevant results of convolutional layer. It is an impor-
tant step to continuously reduce the spatial dimension of the feature map, resulting in fewer
parameters and computations in the network. At the same time, it retains only the important
features or dominant information, which helps to control overfitting and reduce the time re-
quired to train the network. This layer allows CNNs to extract the most important features
of a particular object, even if its shape is distorted or it is presented at a different angle.

There are different types of pooling layers, e.g. max pooling, average pooling, stochastic
pooling and spatial pyramid pooling. The max pooling operation is the most popular and
works by selecting the maximum value from each block of the input matrix. Similar to the
convolutional layer, it is necessary to define the size of the pooling filter and its step size,
which "slides" over the input feature map [73].
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3.3.3. Fully Connected Layer

At the end of each CNN architecture there is usually a fully connected (FC) layer in which
each neuron is connected to all neurons of the previous layer. A one-dimensional array of
numbers (or vectors) from the output feature map of the last convolutional layer or pooling
layer is used as input to a fully connected layer. The features generated by applying convo-
lutional layers and pooling layers are mapped from a subset of the fully connected layers to
the final network outputs, such as the probability of each class in a classification task. When
dealing with classification task, the final fully connected layer usually has the same number
of output nodes as the number of classes [74].

3.4. CNN training process

The CNN training process is a critical phase that involves preparing the data and configuring
the model to achieve optimal performance. This section includes subsections on data prepro-
cessing and augmentation, parameter initialization, regularization and optimization. Each of
these steps is important to improve the training efficiency and accuracy of the CNN model.

3.4.1. Data Preprocessing

Data preprocessing refers to the transformation of a raw data set, which includes a train,
validation and test data set, in order to make the data set cleaner, more detailed, easier to
learn and in a standardized format. The transformation takes place before the data is entered
into the CNN model, whose performance depends on good preprocessing of the data, which
can increase the accuracy of the model.

The most commonly used techniques in preprocessing data are: mean–subtraction and
normalization. The method of subtracting the mean from each individual data point or feature
is used to move the data to the zero center, i.e. zero centering of the data is performed.
Mathematically, this process can be described as follows:

X ′ = X − x∗ (3.2)

x∗ =
1
N

N

∑
i=1

xi (3.3)

where N represents the size of the training dataset and x∗ represents the mean of the data.
In the normalization method, each dimension of the data is divided by its standard devi-

ation. The operation can be implemented mathematically as follows:
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X ′′ =
X ′√

∑
N
i=1(xi−x∗)2

N−1

(3.4)

where the parameters N, X’ and x∗ have the same meaning as in the equations 3.2 and 3.3 [75].

3.4.2. Data Augmentation

Data augmentation is a technique in which synthetic data is constructed through various
operations and transformations of the available data set, thereby expanding the size of the
training set for a CNN model. These synthetic data are new versions or new data samples of
the available data set, usually containing small changes in the data to which the predictions of
the model should be invariant. This technique is extremely useful when only a very limited
amount of training data is available and when it is necessary to perform a regularization
of the CNN model to avoid the problem of overfitting. Some of the operations used in data
augmentation are cropping, rotating, flipping, translation, scaling and noise injection [75,76].

3.4.3. Parameter Initialization

Parameter initialization occurs before the training of a CNN begins and can influence on how
fast the CNN will converge and with what accuracy. Therefore, a good initialization of the
network parameters can make the training of the network more efficient. One of the simplest
methods to initialize the parameters is to set the weights of all layers to zero. However,
this method has been shown to be ineffective because the output and gradients are always
the same during backpropagation through the network, resulting in all weight updates being
identical. In this way, the network would not learn any useful features.

To avoid this problem, the weights are not initialized with the same value, but different
techniques are used to initialize the weights randomly. Examples of common methods for
initializing parameters are random initialization, Xavier initialization, Gaussian distribution
initialization and unsupervised pre–training initialization [75].

3.4.4. Regularization

Overfitting is a major problem for CNN models to achieve good model generalization. Model
generalization can be achieved by properly adapting the deep learning algorithm to new or
previously unseen inputs that come from the same data distribution as the training data. A
model is said to be overfitted if it performs exceptionally well on the training data but does
not perform well on the test data, i.e. the unseen data. The opposite of this is an underfitted
model, which is not well trained on the training data. A model that performs well on both
training and test data can be considered a balanced model and is called a just–fitted model.
These three types of models are shown in Figure 3.5.
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Regularization helps to avoid overfitting by using intuitive concepts such as dropout,
dropping weights or connections between neurons, data augmentation and batch normaliza-
tion [77].

Figure 3.5. Overfitting and Underfitting of Data (Adapted from [77])

3.4.5. Optimization

The CNN model is trained by iteratively updating the parameters of all layers in the net-
work. Therefore, it is very important to choose a good learning algorithm (optimizer) and its
extensions (such as AdaDelta, AdaGrad and Momentum) to improve the model output.

The gradient descent algorithm is commonly used to optimize neural networks. In or-
der to minimize the error in the network, the model parameters are updated in the opposite
direction of the gradient of the loss function. In this process, the model iteratively searches
for a local optimal solution at each training epoch. During each training iteration, the pre-
dicted output of the model is compared with the desired output to minimize the loss function,
propagating the error backwards. The size of each update step is called the "learning rate"
and the complete cycle of updating the parameters over the entire training dataset is called a
"training epoch".

One of the most popular metrics to measure performance is the cross entropy, which
reaches a value of zero when the desired and predicted outputs match exactly, which is the
main goal of any optimization technique. Other algorithms used to optimize CNN mod-
els are Batch Gradient Descent, Stochastic Gradient Descent, Mini-batch Gradient Descent,
Momentum and Adaptive Moment Estimation (Adam) [75, 78].

3.5. CNN Applications in Remote Sensing

The application of CNNs in the field of remote sensing offers a significant advance in the
analysis of multispectral and hyperspectral images. By using deep learning CNNs can recog-
nise complex patterns in spectral, spatial and temporal data across different image datasets.
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In this way, it is possible to effectively capture the relationships between neighbouring pixels
and temporal changes in captured scenes, which contributes to better classification and anal-
ysis accuracy of remote sensing images. This section outlines the main CNN concepts: those
that focus on spectral or temporal data (1D), those that capture spatial relationships between
pixels (2D), those that integrate spectral and spatial data (3D), and those that incorporate
spectral, spatial, and temporal data (4D). Systematic overview of their applications across
various domains will be further elaborated in Chapter 4.

3.5.1. 1D–CNN (Spectral/Temporal)

One-dimensional convolutional neural networks (1D–CNNs) have been shown to be effec-
tive in extracting spectral features from multispectral or hyperspectral remote sensing im-
ages. Spectral signatures, often represented as spectral response curves, provide unique
reflectance values for each pixel that aid in the identification and classification of objects
or materials on the Earth’s surface. The main advantage of 1D–CNNs over conventional
methods lies in their ability to automatically detect and extract spectral features across mul-
tiple wavelengths. Conventional techniques often rely on manual feature extraction, which
is time–consuming and not very adaptable. Although spectral information improves classi-
fication performance, they cannot always distinguish objects with similar spectral signatures
but different spatial structures, leading to potential misclassifications [79].

1D–CNNs are also increasingly used for analyzing temporal data and time series by
learning hierarchical patterns directly from sequential data. This capability facilitates effec-
tive modeling of temporal dependencies and improves classification accuracy in applications
such as land use/land cover mapping from multitemporal remote sensing imagery [80]. Fur-
thermore, while 1D–CNNs can be applied to spatial data at the pixel level [81], their use in
remote sensing research is more common for spectral and temporal data.

Figure 3.6 shows an example of a 1D—CNN architecture consisting of an input layer
that represents the spectral values of a pixel as a one–dimensional array. This is followed by
two one-dimensional convolution layers (1D Conv), a pooling layer and a fully connected
(FC) layer. The result is a map representing the land cover classification.

Figure 3.6. 1D–CNN model architecture for spectral feature extraction in MSI data
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3.5.2. 2D–CNN (Spatial)

Two–dimensional convolutional neural networks (2D–CNNs) are used for feature extraction,
object classification and spatial pattern analysis in remote sensing images. In contrast to
1D–CNNs, which only focus on the spectral characteristics of the observed objects, 2D–
CNNs take into account the spatial arrangement and relationship between pixels to classify
and identify features on the Earth’s surface. Unlike traditional machine learning algorithms
that use pixel-based inputs, 2D–CNNs utilize patch–like inputs to identify and extract the
best classification features (e.g., shape, size, texture). Using patches to merge the spatial
information of neighboring pixels has proven to be effective in classifying different species
with similar spatial features, such as: agricultural fields, urban areas and water bodies [82].

Figure 3.7 illustrates a typical 2D–CNN architecture for spatial feature extraction, which
begins with a convolutional layer that applies filters to the input image. This is followed
by a pooling layer that reduces the spatial dimensions while preserving important features,
allowing the network to focus on the most relevant information. The hierarchical feature
extraction process continues through multiple layers, each learning increasingly abstract
representations, and culminates in a fully connected layer that outputs class probabilities
or segmentation maps [83]. This layered approach allows 2D–CNNs to effectively capture
and interpret the complex spatial structures present in remote sensing imagery. On the other
hand, the disadvantage of 2D–CNN is that it extracts spatial information from one spectral
band or index at a time, failing to take advantage of additional information present in other
bands.

Figure 3.7. 2D–CNN model architecture for spatial feature extraction in MSI data

3.5.3. 3D–CNN (Spectral-Spatial)

A three–dimensional convolutional neural network (3D–CNN) in remote sensing image anal-
ysis enables the extraction of spectral and spatial information formed into a data cube. A
data cube is usually formed from a large number of images stacked on top of each other. The
number of stacked images depends on whether they were acquired with a multispectral or
hyperspectral sensor, with each individual image representing a spectral band of the selected
scene.
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Therefore, 3D filters are formed to capture the spatial (width and height) image patch and
the spectral dimension (depth). Figure 3.8 shows an example of a 3D–CNN architecture,
which shows that data cubes are fed into the 3D convolutional layer during patch extrac-
tion. The efficiency of model learning can be affected by the size of the image patches used
as input, where too much data can lead to noise and too little data can limit the receptive
field [84]. Therefore, selecting an optimal patch size is important to balancing the trade-off
between capturing sufficient contextual information and avoiding unnecessary noise.

By simultaneously analyzing spectral signatures and spatial relationships, 3D–CNNs can
achieve a more comprehensive understanding of complex scenes compared to 1D–CNNs
and 2D–CNNs. Furthermore, 3D–CNNs can be used to improve the accuracy of land cover
classification, anomaly detection, and environmental monitoring, making them a powerful
tool for the advancement of remote sensing applications. In addition, 3D–CNNs can also
take advantage of the temporal dimension and enable the classification of images acquired at
different times [85].

Figure 3.8. 3D–CNN model architecture for spatial-spectral feature extraction in MSI data

3.5.4. 4D–CNN (Spectral-Spatial-Temporal)

A four–dimensional convolutional neural network (4D–CNN) enables the simultaneous
monitoring of spectral, spatial, and temporal features when analyzing remote sensing im-
ages. Figure 3.9 shows a 4D–CNN architecture where the input data consists of 3D cubes
containing the spectral-spatial information of the scene over different times (t1, t2, ... tN).
In this way, the model can learn complex patterns in different spectral-spatial contexts over
time. These patterns are crucial for capturing the dynamic changes and trends observed in
remote sensing data [86].

4D–CNNs require large datasets with consistent temporal coverage to effectively learn
from changes over time. This can be a challenge, especially in cases where remote sensing is
affected by clouds or there is no continuous data collection. Furthermore, the inclusion of an
additional dimension increases the computational complexity of the model. A disadvantage
of 4D–CNNs is that they are not natively available in common deep learning frameworks
such as TensorFlow [87] or PyTorch [88]. Therefore, 4D–CNNs need to be implemented
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with a series of 3D convolutional layers along the time dimension. This involves stacking
multiple 3D convolutional layers that operate on remote sensing images at different points
in time so that the network can learn the temporal dynamics of the scene [89]. The advan-
tage of 4D–CNNs over the previously described CNNs lies in their ability to handle various
remote sensing tasks that involve temporal analysis, such as land cover change detection,
disaster monitoring, and agricultural monitoring. This makes 4D–CNNs a powerful tool for
advancing remote sensing applications through a comprehensive understanding of temporal
dynamics and trends.

Figure 3.9. 4D–CNN model architecture for spatial-spectral feature extraction in
time-series MSI data
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4. SYSTEMATIC LITERATURE REVIEW OF CNN
ARCHITECTURES IN MULTISPECTRAL
IMAGERY

This chapter, based on the systematic review [90], presents an overview of 1D, 2D, 3D
and 4D-CNN architectures applied to multispectral images. It summarizes the most im-
portant aspects of the types of multispectral image (MSI) data used and their application
domains. In the introduction, the relevant literature is explained and the research questions
are formulated. The Methods and Materials section describes the methods used, which are
organized according to the Preferred Reporting Items for Systematic Reviews and Meta–
Analyses (PRISMA) guidelines. In the Results and Discussion section, the most important
results are described and analyzed. The chapter concludes with a summary of the key find-
ings and recommendations for future work.

4.1. Introduction

In recent years, interest in the classification of hyperspectral (HSI) and multispectral (MSI)
images using deep learning methods has increased significantly. Although many articles
have been published on this topic, only a limited number of review articles provide a com-
prehensive overview of the current state of research in this area. Most review articles focus
on the classification of hyperspectral images and explore different approaches, algorithms,
techniques, and applications in this area [91–94]. For instance, in [95], the authors conducted
a comprehensive comparison of several convolutional neural network architectures, includ-
ing 1D–CNN, 2D–CNN, 3D–CNN, and feature fusion–based CNN (FCNN), for the purpose
of hyperspectral image classification. In [96], the authors provided a brief overview of sev-
eral deep learning models that can be utilized for hyperspectral image classification, such as
CNNs, stacked autoencoders (SAE), and deep belief networks (DBN). They systematically
analyzed the state–of–the–art deep learning approaches from two perspectives: pixel-wise
image classification and scene–wise image classification.

However, as of this writing and to the best of the author’s knowledge, there is currently no
review article that focuses solely on the application of deep learning techniques to multispec-
tral images. There are several review articles that address the broader topic of deep learn-
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ing and remote sensing images, which encompasses hyperspectral, multispectral, unmanned
aerial vehicle (UAV), and synthetic aperture radar (SAR) imagery [58, 97, 98]. Additionally,
authors in [99,100] have provided a comprehensive review and resources for high–resolution
multispectral imagery in the context of scene classification, object detection, segmentation,
and image retrieval.

Although there are multiple review articles that cover the topic of MSI classification, a
comprehensive analysis of the CNN–based approach has not yet been provided. This indi-
cates a need for a more in–depth exploration and analysis of CNN–based MSI classification.
To address this gap, this section focuses specifically on different types of CNNs based on the
dimensionality of input data. Specifically, it examines 1D, 2D, 3D, and 4D CNNs, which
respectively cover spectral, spatial, spectral–spatial, and spectral–spatial through time clas-
sification.

To identify the type of CNN (1D, 2D, 3D, or 4D), the term "degree of convolution" is
introduced to specify the dimensionality of the input data in a convolutional neural network.
In CNNs, the term "dimension" can refer to the number of dimensions in the input data or
feature map, as well as the number of filters or channels in a layer that do not necessarily
match the input data or feature map’s dimension. To avoid ambiguity, this thesis uses the
term "degree" to identify the type of CNN (1D, 2D, 3D, or 4D) based on the dimensionality
of the input data.

4.1.1. Problem formulation

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta–Analyses)
guidelines were used for a systematic review of the literature on the application of differ-
ent degrees of convolutional neural networks to multispectral images. PRISMA provides a
framework for conducting and reporting systematic reviews and meta–analyses [101]. The
aim of this systematic review is to answer the following research questions (RQ):

• RQ1: In which application domains have different CNN models been successfully
applied to process multispectral image data?

• RQ2: What are the commonly utilized MSI datasets for training CNN models in the
context of multispectral satellite imagery?

• RQ3: How does the degree of CNN impact the performance of classification, regres-
sion, or segmentation tasks for multispectral satellite imagery?

4.2. Materials and Methods

This section provides a comprehensive description of the study approach, including eligibil-
ity criteria, information sources, search strategies, data extraction and effect measures in line
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with the rationale and objectives stated in the PRISMA guidelines.

4.2.1. Eligibility Criteria

The main eligibility critera for inclusion in this study were scientific publications that ap-
plied 1D, 2D, 3D or 4D CNNs in the field of remote sensing. The broader term ’remote
sensing’ was employed to capture studies that may not explicitly mention multispectral im-
agery but rather refer to satellite names or datasets relevant to the field. Studies not focused
on multispectral satellite imagery (e.g., hyperspectral or UAV imagery) were excluded.

Additionally, publications that focused only on well–known CNN models such as
AlexNet, ResNet and VGG were not considered eligible, but studies that originally used
different degrees of CNN or adapted them in their models were included. Only articles and
conference papers published in English up to March 2024 were considered. The detailed
eligibility criteria for this review is summarized in Table 4.1.

Table 4.1. Eligibility criteria.

Type of data Multispectral satellite imagery

Algorithms or Techniques

Convolutional neural networks
(1D, 2D, 3D, and 4D) for image
classification, object detection,

semantic segmentation or regression

Comparator

RQ1: e.g. Vegetation, Urban
RQ2: e.g. Sentinel, Landsat, MODIS

RQ3: Evaluation metrics for
classification, regression and segmentation

Outcome

Classification and characterization
of the diverse applications of CNNs
within the domain of remote sensing

Timing All

Environmental or
Geographical Context All

Study Design
Original data

Relevant articles and conference papers

Publications Studies published in English only

4.2.2. Information Sources

A search of the Web of Science, IEEE Xplore and Scopus databases was conducted on May
10, 2024 to find relevant studies. These databases were selected due to their comprehensive
coverage of scientific literature in various fields. The search included publications available
until March 31, 2024.
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4.2.3. Search Strategy

The search strategy used a combination of keywords related to convolutional neural networks
and remote sensing. Specifically, the search query included variations of ’Nd–cnn’ OR ’Nd
cnn’ OR ’Nd convolutional’ AND ’remote sensing’, where ’N’ stands for the degree of CNN,
ranging from one to four. All publications were restricted to those that were published in
English and had the source type ’Journal’ or ’Conference Proceedings’. The same query was
performed in all three databases: Web of Science, IEEE Xplore and Scopus. An exception
was the Scopus database, where the search was limited to publication titles, keywords and
abstracts due to the very large number of publications indexed in this database. To cope
with the large volume of search results in the Scopus database, filters were also applied
to keywords to exclude irrelevant content (e.g. electrocardiogram, hyperspectral images).
Given the limitations of specifying the search date in IEEE Xplore, publications up to the
search date were manually reviewed to exclude those published after March 31, 2024, to
ensure the relevance and timeliness of the search results. Table 4.2 shows the basic search
queries for all three databases, where Nd refers to 1D, 2D, 3D and 4D CNNs.

Table 4.2. Search strategy for different databases and CNNs

Database Search Query

Web of Science

(((((ALL=(Nd – cnn)) OR ALL=(Nd cnn))
OR ALL=(Nd convolutional))) AND
ALL=(remote sensing)) AND (LA==("ENGLISH")
AND DT==("ARTICLE" OR "PROCEEDINGS PAPER"))
AND DOP=1990-01-01/2024-03-31

IEEE Xplore

(((("All Metadata":"Nd–cnn" OR
"All Metadata":"Nd cnn" OR
"All Metadata":"Nd convolutional") AND
("All Metadata":"remote sensing")))) AND
("ContentType":"Journals" OR
"ContentType":"Conferences")

Scopus

((TITLE-ABS-KEY (Nd-cnn) OR
TITLE-ABS-KEY (Nd AND cnn) OR
TITLE-ABS-KEY (Nd AND convolutional)) AND
ALL (remote AND sensing)) AND
((PUBYEAR > 1992 AND PUBYEAR < 2024)
OR PUBDATETXT (january 2024) OR
PUBDATETXT (february 2024) OR
PUBDATETXT (march 2024)) AND
(LIMIT-TO (LANGUAGE, "English"))
AND (LIMIT-TO (SRCTYPE, "j")
OR LIMIT-TO (SRCTYPE, "p"))
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4.2.4. Data Extraction

The extracted data from the included studies follows standardized forms: Publication Type
(Journal or Conference), Authors, Article Title, Source Title, Publication Year, Author
Keywords, Abstract, Research Areas, Open Access, Satellite, Domain, Application, Ma-
chine Learning Technique, Algorithm Complexity, Accuracy, F1–Score, Precision, Recall,
Producer Accuracy, User Accuracy, Pixel Accuracy, Kappa, IoU, MIoU, Dice, R–Square,
RMSE, MAE and Parameter Description.

4.2.5. Effect measures

The performance of CNNs include evaluation metrics across different tasks such as classifi-
cation, segmentation and regression. For classification and segmentation tasks, the collected
data was analyzed using the following metrics: accuracy, F1–score, precision, recall, pro-
ducer accuracy, user accuracy, pixel accuracy, kappa, Intersection over Union (IoU), Mean
Intersection over Union (MIoU) and Dice coefficient. These metrics are expressed as per-
centages (%). For regression tasks, we extracted data from the collected publications for met-
rics R–squared (R²), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) all
of which are expressed according to the predicted unit (e.g. chlorophyll–a concentration as
mg/m³). It is important to note that in some publications, it was not possible to access every
measure for the performed tasks.

4.3. Results and Discussion

4.3.1. Study Selection

A systematic review of the literature from the Web of Science, IEEE Xplore, and Scopus
databases retrieved 678 articles for 1D–CNN related studies, 1213 articles for 2D–CNN re-
lated studies, 2013 articles for 3D–CNN related studies, and 48 articles for 4D–CNN related
studies. Studies included in this review were published until March 31st, 2024. Due to the
limitation of the IEEE Xplore database, which does not allow filtering by date or month but
only by year, the publications were manually reviewed and those published after March 31st
were removed. After that, the title of each publication was screened, resulting in 405 studies
related to 1D–CNN, 765 studies related to 2D–CNN, 1219 studies related to 3D–CNN, and
37 studies related to 4D–CNN. In the next stage of abstract screening and full–text assess-
ment (if applicable), studies that were not relevant to this systematic review were excluded.
Thus, in the final review process, 49 studies were included for 1D–CNN, 58 for 2D–CNN,
66 for 3D–CNN, and 3 for 4D–CNN (Figure 4.1).
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Figure 4.1. Flow diagram illustrating the publication identification and screening process
following the PRISMA guidelines (template is reused from Page et al. [101] with CC BY

4.0)

4.3.2. Overview of Remote Sensing Publications

The systematic review included a total of 143 unique publications, comprising approximately
three quarters (110) of journal articles and one quarter (33) of conference articles (Figure
4.2).

In examining the distribution of articles using convolutional neural networks, it is evident
that publications using 3D–CNNs dominate. It is interesting that 3D–CNN allows the ex-
traction of spatial features over multiple bands simultaneously, potentially providing better
classification accuracy compared to 1D–CNNs and 2D–CNNs [102]. In contrast, 4D–CNNs
shows the lowest representation with less than 2% of the total publications included in our
systematic review. 4D-CNNs are under explored in terms of their application across diverse
domains. While we found applications in Vegetation and Water domains, there’s a lack of
studies in Agriculture, Urban, and Geohazards domains. Additionally, the temporal aspect of
4D-CNNs is not fully utilized in most studies. The reason for this could be the complexity of
4D–CNNs and their unavailability in some popular deep learning frameworks such as Ten-
sorflow or PyTorch. As a result, 4D–CNNs must be implemented using a sequence of 3D
convolutions along the temporal dimension, involving stacking multiple 3D convolutional
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layers that operate on the multispectral images at different points in time. This allows the
network to learn the temporal dynamics of the scene [89]. While this approach may be com-
putationally complex and not be as efficient as using native 4D convolutional layers, it still
allows for the joint exploitation of spatial, spectral, and temporal information in multispectral
imagery.

(a) Proportion of publications by publication type (b) Proportion of publications by CNN architecture

Figure 4.2. Distribution of publications

Figure 4.3 presents the heatmap illustrating the distribution of the most common journals
used over the years. It is interesting to note that the majority of publications are published in
journals associated with the term ’remote sensing’ in their names. The most prevalent journal
sources for the publications were Remote Sensing and ISPRS Journal of Photogrammetry
and Remote Sensing.

Figure 4.3. Heatmap of the most frequent journals of publications focusing on CNN
applications in multispectral imagery

Similarly, Figure 4.4 presents a heatmap for the most selected conferences over years
for publishing remote sensing related articles. As for the conference sources, the Interna-
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tional Geoscience and Remote Sensing Symposium (IGARSS) had the highest number of
published articles. The label "Others" is assigned to journals or conferences that have been
identified as sources with only one publication.

Over the past decade, CNNs have become increasingly popular in remote sensing ap-
plications, particularly in processing MSI data which suggest these numbers of published
articles. A notable increase in research output can be observed from 2020 to 2023, with 5 or
more conference papers published each year and at least 17 journal articles released annu-
ally, indicating a consistent trend in research output. This is further illustrated by the overall
number of publications for each degree of CNN over the years in Figure 4.5. Moreover,
while the number of publications peaked in 2022, there was a decrease in publications for
3D–CNN thereafter (24 –> 9), but an increase was observed for 1D–CNN (16 –> 24).

Figure 4.4. Heatmap of the most frequent conferences of publications focusing on CNN
applications in multispectral imagery

Figure 4.6 provides a visual representation of the highest–frequency terms found in the
titles and abstracts of peer–reviewed literature with larger font sizes indicating higher fre-
quency. It can be noticed that the terms with the highest frequency are ’data’ and ’model’
which suggest the importance of selecting quality data and models in remote sensing re-
search. Furthermore, terms that had a slightly lower frequency are ’method,’ ’classification,’
’deep learning,’ and ’neural network’ which suggest common approaches used in publica-
tions. This observation underlines the importance of methodological choices in analyzing
and interpreting remote sensing data.

Figure 4.7 shows a publication distribution for each CNN over different applications that
can be classified in one of six different domains: Agriculture (e.g., crop classification), Geo-
hazards (e.g. wildfire prediction), Urban (e.g. urban land cover maps), Vegetation (e.g. forest
classification), Water (e.g. estuary water quality classification), and Others (e.g. spatiotem-
poral image fusion). Most publications used first three degree of CNNs to solve problems in
the domain of Agriculture, specifically for crop classification and crop yield prediction. The
second most used domain is Vegetation, where the 4D–CNN is applied for segmentation.
Vegetation usually includes studies involving the analysis of plants such as trees, shrubs,
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Figure 4.5. Publication Trends Over Time for Each 1D, 2D, 3D and 4D–CNN

Figure 4.6. The word cloud of the most frequently used words in abstracts

grasslands and natural vegetation [103]. Agriculture, on the other hand, includes studies fo-
cused on crop breeding, agricultural land use monitoring and crop yield forecasting, often
relying on vegetation data to to assess crop health, productivity, and land use [104]. Thus,
both domains involve monitoring and analysis of plants life.

The distribution of publications of each CNN categorized by satellite data sources is
presented in Figure 4.8. The plot shows that the majority of publications utilized data from
the Sentinel–2 satellite when implementing 1D, 2D, and 3D CNNs. Sentinel-2 satellites,
operated by ESA, have 13 bands with spatial resolutions ranging from 10 m to 60 m and

45



Chapter 4: SYSTEMATIC LITERATURE REVIEW OF CNN ARCHITECTURES IN
MULTISPECTRAL IMAGERY

a temporal resolution of 5 days [46]. Notably, satellites Landsat–8 and MODIS have been
preferred across all degrees of CNNs, even though there are almost half as many publications
compared to Sentinel–2. Landsat–8 carries a two sensor payload, the Operational Land
Imager (OLI) and the Thermal Infrared Sensor (TIRS), where OLI captures nine spectral
bands including one panchromatic band while TIRS has two thermal bands. It has a temporal
resolution of 16 days, with a 15 meter spatial resolution for the panchromatic band and a 30
meter spatial resolution for the multispectral bands [105]. On the other hand, MODIS is a
NASA instrument launched on two satellites – MODIS Terra and MODIS Aqua. It has 36
spectral bands and a 1–2 day temporal resolution. It collects data at three spatial resolutions:
250, 500, and 1000 meters [106].

Figure 4.7. Publication Distribution for each CNN by Domain

Figure 4.8. Publication Distribution for each CNN by Satellite
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4.3.3. Meta–Analysis of Publications

As can be seen in Figure 4.8, the highest representation is of the Sentinel–2, Landsat–8, and
MODIS satellites across different degrees of CNNs. Similar situation can be observed at
the individual usage of satellites for each degree of CNN in particular application domains.
Specifically, for 1D–CNN, in Figure 4.9 it can be seen that Sentinel–2 is the most represented
in all domains, with the highest application in the Agriculture domain. Landsat–8 is most
represented in the ’Water’ domain, followed by ’Vegetation’, ’Others’, and ’Urban’. As for
MODIS, it is equally used in the ’Agriculture’, ’Geohazards’, and ’Water’ domains.

Figure 4.9. Satellite usage across different domains for 1D–CNN

Regarding the use of 2D–CNN, when the individual application domains are examined
in Figure 4.10, it can be seen that in the ’Agriculture’ domain, Sentinel–2 is the most repre-
sented satellite, followed by Landsat–8 and MODIS. In the ’Geohazards’ domain, for exam-
ple, Landsat–7 is identified as the most represented satellite, while in the ’Urban’ domain, in
addition to the three most common satellites (Sentinel–2, Landsat–8, and MODIS), Landsat–
5 is also represented.

Figure 4.11 shows that more different satellites are used in the study for 3D–CNN com-
pared to 1D and 2D CNN. For example, in the ’Agricultural’ domain, in addition to the three
most commonly used satellites, the Gaofen-2 satellite is also used. The ’Others’ domain is
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Figure 4.10. Satellite usage across different domains for 2D–CNN

also interesting, where many publications have used satellites such as Gaofen–1, Landsat–8,
PROBA–V, and WorldView–3. For instance, studies that used Gaofen–1 data were applied
in cloud masking [107,108]. As for Landsat–8 data, they were used for Image Preprocessing
and Enhancement purposes [109–112]. PROBA–V data were mainly utilized for improving
satellite image quality [113–116], while data from the WorldView–3 satellite were used for
Image Analysis and Processing [117–119] and Image Compression [110].

The number of publications that utilized 4D–CNN is too small, so there is not enough
data for general conclusions (Figure 4.12). There are a total of three publications where
4D-CNN was applied, of which two used Landsat–8 data for problem–solving in the ’Vege-
tation’ domain and one used MODIS data for problem-solving in the ’Water’ domain. Both
publications related to using 4D–CNN on Landsat–8 data in the ’Vegetation’ domain were
focused on land cover classification [86,89], while the publication related to MODIS data in
the ’Water’ domain used 4D–CNN for cyanobacteria bloom prediction [120].

As shown in Figure 4.9, Sentinel-2 is the most frequently used satellite data source across
different CNN architectures. Further analysis reveals that a significant portion of these
Sentinel-2 based studies focus on agricultural applications. For instance, in the 1D-CNN
category (Figure 4.10), Sentinel-2 data is predominantly used in the Agriculture domain.
This trend is consistent across 2D-CNN (Figure 4.11) and 3D-CNN (Figure 4.12) applica-
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Figure 4.11. Satellite usage across different domains for 3D–CNN

Figure 4.12. Satellite usage across different domains for 4D–CNN
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tions as well, highlighting the particular suitability of Sentinel-2 data for agricultural studies
using various CNN architectures.

In this systematic review, from each publication is extracted the type of the machine
learning techniques used and metrics related to that technique. The distribution of publi-
cations using machine learning techniques classification, regression and segmentation over
different CNNs is shown in Figure 4.13. There are also included compression and image
enhancement, which are not traditionally categorized as machine learning techniques. These
are techniques related to image processing that often use CNNs to achieve tasks and in this
systematic review these techniques are used in publications related to 3D–CNN. The find-
ings indicate that classification is the most frequently used machine learning technique, with
more than 30 publications for 1D, 2D, and 3D CNNs. Regression is identified as the second
most used machine learning technique, while segmentation is the least used. Since classifi-
cation is the focus of most publications, further analysis of metrics for classification-based
publications is conducted. Insufficient publications related to regression prevent a construc-
tive analysis, and the lack of available data for metrics makes the sample too small for any
concrete conclusions. Consequently, a full dataset for regression and segmentation metrics,
where available, is provided and analyzed in the sections below.

Figure 4.13. Number of publications using different machine learning techniques by each
CNN

Analysis of Publications Implementing Classification

Classification involves examining the connections among a group of ’objects’ to determine
whether the data can be accurately summarized by a limited number of categories represent-
ing similar objects [121]. From the perspective of remote sensing imagery, it is a process
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of categorizing pixels in an image of raw satellite data to obtain a given set of labels. There
are different types of classification, of which the most popular are supervised and unsuper-
vised [122]. In this systematic review, the types of classifications used in publications were
not analyzed, only performance metrics accuracy and F1–score.

Accuracy is a measure that refers to the total data accurately predicted by the trained
classifier when tested on unseen data. It ranges from 0 to 1, or in percentage terms from 0% to
100%, where accuracy closest to 1 or 100% suggests that the classifier is more accurate [123].
Figure 4.14 shows a box and whisker plot pointing the central tendency, dispersion, and
potential outliers of accuracy for different CNNs degrees over different domains.

Figure 4.14. Accuracy of CNNs using classification across different domains

It can be seen that the 1D–CNN tends to achieve an accuracy of around 90% in the ex-
amined publications over different domains. The median accuracy values for the 1D–CNN
in each domain are: ’Agriculture’ – 92.00%, ’Geohazards’ – 93.78%, ’Urban’ – 90.28%,
’Vegetation’ – 93.00%, ’Water’ – 96.17%, and ’Others’ – 95.18%. For the ’Urban’ domain,
the plot shows slightly negative skewness, suggesting that there are some publications with
less than 90% accuracy, which is further confirmed by one publication falling outside the
whisker. For the ’Agriculture’ domain, the plot shows slightly positive skewness, indicating
that there are several publications with higher accuracy compared to other publications. Ex-
amining the accuracy of the 2D-CNN for each domain, it can be noticed that the boxes for
2D-CNN across domains are taller compared to those for the other two CNNs. This suggests
that there is greater variability in the accuracies reported in publications for the 2D-CNN
compared to the other CNNs. The median accuracy values for the 2D-CNN in each do-
main are: ’Agriculture’ – 90.59%, ’Geohazards’ – 91.38%, ’Urban’ – 94.09%, ’Vegetation’
– 89.18%, ’Water’ – 69.44%, and ’Others’ – 95.94%. For the ’Agriculture’ and ’Urban’
domains, the plot shows negative skewness, and in the ’Agriculture’ domain, one dot is out-
side the whisker, indicating that one publication falls outside the range. Positive skewness
is observed in the ’Geohazards’ domain, indicating that most accuracies are concentrated
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on the lower end of the value range, but there are a few high–value accuracies pulling the
distribution tail to the right. Accuracies of 3D–CNN do not have median accuracy values
around 90% for all domains as was the case for 1D–CNN. Instead, the median accuracies are
91.30% for ’Agriculture’, 90.59% for ’Geohazards’, 95.00% for ’Urban’, 91.57% for ’Veg-
etation’, 86.53% for ’Water’, and 98.87% for ’Others’. Moreover, it shows slightly negative
skewness in the ’Vegetation’ and ’Water’ domains, while it exhibits positive skewness in the
’Agriculture’ domain, with one accuracy as an outlier.

Based on the available median accuracy values, 1D–CNN proved to be the best in the
’Water’ domain with a median accuracy of 96.17%. In contrast, in the ’Water’ domain,
2D-CNN achieves a median accuracy of only 69.44%. In the ’Geohazards’, and ’Urban’
domains, 2D–CNN achieves higher median accuracy compared to the other CNNs. For
the ’Vegetation’ domain, all three CNNs show high median accuracy values. Based on the
results, 1D–CNN and 2D–CNN can be used for problems that require consistent performance
across all domains, while 3D–CNN is recommended for solving problems that require high
accuracy in the ’Agriculture’ and ’Others’ domains.

The F1–score is the harmonic mean of the precision and recall metrics. Precision is the
ratio of correctly predicted positive observations to the total number of predicted positive ob-
servations. Recall is the ratio of correctly predicted positive observations to all observations
in the actual class. The best value achieved by the F1–score is 1 (perfect precision and recall)
and the worst value is 0 [124]. Figure 4.15 displays a box and whisker plot of the F1–score
metric for each CNN and application domain. Due to the unavailability of F1–score data for
every individual publication, generalizing conclusions for all application domains to avoid
bias is not feasible. However, domain–level analysis is conducted where data are available
for all three CNNs. In the Agriculture domain, the median F1–scores are 85.33% for 1D–
CNN, 91% for 2D–CNN, and 90.08% for 3D–CNN. In the Geohazards domain, the median
F1–scores are 93.96% for 1D–CNN, 83.66% for 2D–CNN, and 74.81% for 3D–CNN. In the
Vegetation domain, the median F1–scores are 94% for 1D–CNN, 83.68% for 2D–CNN, and
83.21% for 3D–CNN. Based on these findings, we can single out 2D–CNN and 3D–CNN
with F1–scores around 90% for ’Agriculture’, suggesting that 2D–CNN and 3D–CNN are
likely to capture spatial patterns in crop classifications. On the other hand, 1D–CNN showed
high F1–scores (>90%) compared to 2D–CNN and 3D–CNN in the ’Vegetation’ and ’Geo-
hazards’ domains. These findings need to be interpreted with caution because the F1–score
data is imbalanced, preventing us from making a general conclusion.

Analysis of Publications Implementing Regression

Regression is a statistical method used to investigate the relationship between species and
the environment, based on observations of species and environmental variables at a series
of locations. In regression analysis, data on a particular species is analyzed separately and
how it is related to environmental variables. The goal of regression analysis is to describe
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Figure 4.15. F1–scores of CNNs using classification across different domains

the response variable (abundance of species) as a function of one or more environmental
explanatory variables. The response function cannot predict responses without errors, but
efforts should be made to minimize those errors [125].

In this systematic review, certain metrics were extracted from publications used to evalu-
ate models, such as R–squared, RMSE, and MAE. R–squared, also known as the coefficient
of determination, determines the proportion of variance in the dependent variable that can be
explained by the independent variables. It provides information on how well the observed
values match the predicted values and can be expressed as a value or percentage, ranging
from 0 to 1 or 0% to 100%. A value closer to 1 or 100% is desirable, indicating a better fit
between the observed and predicted values. RMSE or the Root Mean Squared Error is the
square root of the mean of the squares of all the errors. It indicates how close the line of
best fit is to the set of points. MAE or Mean Absolute Error provide the average value of
the absolute difference between the observed value and the predicted values. MAE or Mean
Absolute Error provides the average value of the absolute difference between the observed
value and the predicted values [126].

Since regression predicts the value of the response variable for specific species, a general
analysis was not possible. For example, publications were grouped by application domains,
but there was heterogeneity within the same domain (e.g., within the Water domain, parame-
ters such as secchi depth and temperature were analyzed). Therefore, averaging metric values
is not recommended as it could mask important application–specific differences and lead to
misinterpretation, resulting in a lack of validity in the comparison. Tables 4.3, 4.4, and 4.5
highlight publications that have used regression with 1D, 2D, and 3D–CNNs, respectively.
For each study, key information (e.g. publication type, year, satellite, and metrics such as R–
squared, RMSE, and MAE) is presented and grouped by domain. Many values are missing.
For those shown in Table 4.3, it can be seen that for the 1D–CNN in the ’Water’ domain,
the prediction of chlorophyll value expressed in milligrams per cubic meter is dominant in
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the regression analysis. For publications related to 2D–CNN (Table 4.4), most studies are in
the ’Others’ domain, focusing on parameters related to image quality such as reflectance. As
for the publications related to 3D–CNN (Table 4.5), in addition to the ’Others’ domain, most
of them were related to the ’Agriculture’ domain. The studies mainly focused on predicting
soybean and crop yield parameter values.

Analysis of Publications Implementing Segmentation

Image segmentation is a technique defined as the process of dividing or partitioning an image
into homogeneous parts, called segments. This is particularly useful for applications such
as image compression or object detection, as processing the entire image for these types
of applications is inefficient. Therefore, image segmentation is used to segment parts of
the image for further processing [127]. According to [128], in remote sensing, it is often
viewed as a tool for detecting landscape changes and land use or land cover classification. In
Table 4.6 all publications were comprised related to segmentation for different types of CNN
grouped by domains. It can be seen that even on this really small representative sample of
sixteen publications, the most publications were in domain agriculture and vegetation, which
is in accordance to [128]. It is interesting that the most of these publications were using
Landsat–8 data for segmentation.

Moreover, following metrics were extracted: Producer Accuracy, User Accuracy, Accu-
racy, F1–score, Precision, Recall, Kappa, IoU, MIoU and Dice. Accuracy, F1–Score, Preci-
sion and Recall have same definition as for classification. Producer’s and User’s Accuracies
are commonly used in segmentation tasks. Producer’s accuracy indicates how well a training
set pixel is classified for a given coverage type. User’s accuracy indicates the probability that
a pixel classified as belonging to a certain class actually represents that class on the ground.
The Kappa coefficient indicates how much the classification is better compared to a classi-
fication where each pixel is randomly assigned a class value [129]. The Dice coefficient is
a metric used to compare the similarity of two samples. The Dice coefficient is twice the
overlapping area of the two segmentations divided by the total number of pixels in the two
images. Intersection over Union (IoU) measures the overlapping area between the predicted
segmentation and the true segmentation, representing the overlapping area divided by the
union area of the predicted segmentation and the true segmentation. Mean Intersection over
Union (MIoU) is the average of the IoU values calculated for each class [130].
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Table 4.3. 1D-CNN publications that implement regression

Domain Study
Publication

Type
Year Satellite R-squared RMSE MAE Parameter

Agriculture
Jeong et al. [131] Journal 2022 MODIS 0.86 0.61 N/A Rice yield (Mg/ha)
Sabo et al. [132] Journal 2023 MODIS N/A N/A N/A N/A

Geohazards Xu et al. [133] Journal 2023 MODIS 0.907 0.31 N/A Drought
Urban Vulova et al. [134] Journal 2021 Landsat-8 0.824 25 N/A Reference

evapotranspiration (mm/h)

Vegetation
Zhou et al. [135] Journal 2021 MODIS N/A N/A N/A Rice yield (Mg/ha)
Fathi et al. [136] Journal 2023 Sentinel-2 0.745 6.085 4.895 Soybean yield (Bu/Ac)

Water

Maier et al. [137] Journal 2021 MODIS 0.624 19.3 14.6 Chl-a (mg/m3)

Fan et al. [138] Journal 2022
SeaWIFS 0.874 8.178 1.487

Chl-a (mg/m3)MERIS 0.915 12.523 1.465
MODIS 0.894 6.727 1.448

Mukonza et al.
[139] Journal 2022

Landsat-8 0.93 0.15 N/A Temperature
(degree)Sentinel-3 0.91 0.2 N/A

Salah et al. [140] Journal 2023 Sentinel-2 N/A 4.12 1.06 Chl-a (mg/m3)
Ivanda et al. [141] Journal 2023 Sentinel-3 0.89 2.3 1.4 Secchi (m)
Zeng et al. [142] Journal 2023 MODIS 0.874 18.968 1.494 Chl-a (mg/m3)
Salah et al. [143] Conference paper 2023 Sentinel-2 N/A 11.87 6.71 Chl-a (mg/m3)

Others Ojaghi et al. [81] Journal 2023 Sentinel-3 0.97 3 N/A Reflectance

* Mg/ha: Metric Tons per Hectare; Bu/Ac: Bushels per Acre; mg/m3: milligrams per cubic meter
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Table 4.4. 2D-CNN publications that implement regression

Domain Study
Publication

Type
Year Satellite R-squared RMSE MAE Parameter

Agriculture
Sagan et al. [144] Journal 2021 WorldView-3 N/A N/A N/A N/A

PlanetScope
Nejad et al. [102] Journal 2023 MODIS 0.73 6.25 5.09 Crop yield (Bu/Ac)
Sabo et al. [132] Journal 2023 MODIS N/A N/A N/A N/A

Geohazards Lee et al. [145] Journal 2020 COMS 0.94 8.32 6.09 Maximum sustained
wind speed (kts)

Vegetation Fathi et al. [136] Journal 2023 Sentinel-2 0.758 N/A N/A Soybean yield (Bu/Ac)
Water Zhong et al. [146] Journal 2022 Sentinel-2 0.9 1.03 N/A Bathymetry (m)

Others

Papadomanolaki et al. [147] Journal 2021 WorldView-2 N/A N/A N/A N/A
IKONOS

Zhu et al. [111] Journal 2022 Landsat-8 0.9906 0.0258 N/A Reflectance
MODIS

Zhang et al. [148] Journal 2022 QuickBird 0.78 1.059 N/A Similarity of
spectral features

Zhao et al. [112] Journal 2023 Landsat-8 0.7921 N/A N/A Atmospheric
HY-1C correction

Wang et al. [149] Journal 2023 MODIS
Sentinel-2 N/A N/A N/A N/A
Landsat-8

* Bu/Ac: Bushels per Acre; kts: a knot is a unit of speed equal to one nautical mile per hour
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Table 4.5. 3D-CNN publications that implement regression

Domain Study
Publication

Type
Year Satellite R-squared RMSE MAE Parameter

Agriculture

Terliksiz et al. [150] Conference 2019 MODIS N/A 0.81 N/A Soybean yield
paper (Bu/Ac)

Qiao et al. [151] Journal 2021 MODIS 0.755 0.755 N/A Crop yield
(MT/ha)

Sagan et al. [144] Journal 2021 WorldView-3, N/A N/A N/A N/A
PlanetScope

Nejad et al. [102] Journal 2023 MODIS 0.78 5.93 4.39 Crop yield
(Bu/Ac)

Wang et al. [152] Conference 2023 MODIS N/A 5.468 N/A Crop yield
paper (kg/ha)

Wang et al. [153] Journal 2023 MODIS N/A 5.33 N/A Crop yield
(kg/ha)

Geohazards Lee et al. [145] Journal 2020 COMS 0.8856 11.34 8.65 Maximum sustained
wind speed (kts)

Vegetation Fernandez-Beltran et al. [154] Journal 2021 Sentinel-2 0.9526 107.26 N/A Crop yield
(kg/ha)

Water
Fei et al. [155] Journal 2022 AVHRR N/A 0.352 0.2641 SST (degrees)

Wang et al. [156] Journal 2023 MODIS N/A N/A N/A N/A
Others Molini et al. [113] Conference 2019 PROBA-V N/A N/A N/A N/A

paper
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Table 4.5. (Continued)

Domain Study
Publication

Type
Year Satellite R-squared RMSE MAE Parameter

Others

Chen et al. [157] Journal 2020 GeoEye-1, N/A N/A N/A N/A
WorldView-2

Zhang et al. [108] Journal 2021 Gaofen-1, N/A N/A N/A N/A
Sentinel-2

He et al. [118] Journal 2021 WorldView-3 N/A N/A N/A N/A
Zhang et al. [158] Journal 2021 Himawari-7 0.865 0.314 N/A Aerosol optical

depth
Ibrahim et al. [116] Conference 2022 PROBA-V N/A N/A N/A N/A

paper
Igeta et al. [119] Conference 2022 WorldView-3 N/A N/A N/A N/A

paper
Zhu et al. [111] Journal 2022 Landsat-8, 0.9906 0.0258 N/A Reflectance

MODIS
Zhang et al. [148] Journal 2022 QuickBird 0.7868 0.0975 N/A Similarity of

spectral features
Zhao et al. [112] Journal 2023 HY-1C, N/A N/A N/A N/A

Landsat-8

* Bu/Ac: Bushels per Acre; MT/ha: metric tons per hectare; kg/ha: kilograms per hectare; kts: a knot is a unit of speed equal to one nautical mile per hour; SST: Sea Surface
Temperature
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Table 4.6. Publications that implement segmentation

CNN Domain
Study
Type
Year

Satellite
Producer
Accuracy

User
Accuracy
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U

D
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1D Others Bahl et
al. [159]
C/2022

Landsat-8 N/A N/A 93.65 88.98 93.79 84.65 N/A N/A N/A N/A

2D
Urban Ghandorh et

al. [160]
J/2022

Spot-7 N/A N/A N/A N/A N/A N/A N/A N/A 79.51 88.65

Vegetation
Li et

al. [161]
J/2022

Gaofen-2 N/A N/A 94.13 82.78 N/A N/A 88.86 N/A 73 N/A

Saralioglu et
al. [162]
J/2022

WorldView-
2

N/A N/A 95.6 N/A N/A N/A N/A N/A N/A N/A

3D

Agriculture
Mohammadi
et al. [163]

C/2021

Landsat
ARD

93.7 93.6 N/A N/A N/A N/A 91.8 N/A N/A N/A

Gallo et
al. [164]
J/2023

Sentinel-2 N/A N/A 70.33 70.3 70.35 70.33 64 N/A 53.02 N/A
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Table 4.6. (Continued)

CNN Domain
Study
Type
Year

Satellite
Producer
Accuracy

User
Accuracy
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Mohammadi
et al. [165]

J/2023

Landsat-7,
Landsat-8

89.4 90.8 N/A N/A N/A N/A N/A N/A N/A N/A

Vegetation

Kalinicheva
et al. [166]

J/2020

Sentinel-2,
SPOT-5

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Meshkini et
al. [167]
C/2021

Landsat-5,
Landsat-7,
Landsat-8

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Li et
al. [161]
J/2022

Gaofen-2 N/A N/A 97.45 89.49 N/A N/A 94.68 N/A 82.45 N/A

Meshkini et
al. [168]
J/2022

Landsat-8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Saralioglu et
al. [162]
J/2022

WorldView-
2

N/A N/A 95.6 N/A N/A N/A N/A N/A N/A N/A
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Table 4.6. (Continued)

CNN Domain
Study
Type
Year

Satellite
Producer
Accuracy

User
Accuracy

A
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y

F 1
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Water Wang et
al. [120]
J/2022

MODIS N/A N/A 64.29 N/A N/A N/A N/A N/A N/A N/A

4D
Vegetation

Giannopoulos
et al. [86]

J/2022

Landsat-8 N/A N/A 61.56 61.56 61.56 61.56 N/A 44.47 N/A N/A

Giannopoulos
et al. [89]

J/2022

Landsat-8 N/A N/A 89.16 77.96 N/A N/A N/A N/A N/A N/A

Water Wang et
al. [120]
J/2022

MODIS N/A N/A 71.43 N/A N/A N/A N/A N/A N/A N/A

* C – Conference paper; J – Journal
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Chapter 4: SYSTEMATIC LITERATURE REVIEW OF CNN ARCHITECTURES IN
MULTISPECTRAL IMAGERY

4.3.4. Data Ontology for CNN Architecture Applications in Remote
Sensing Publications

According to [169], there are a number of different definitions of ontology, but it can be de-
scribed as a formal and explicit representation of concepts within a certain domain, including
classes (or concepts), their properties (attributes) and restrictions on these properties. On-
tologies have proven to be a powerful tool for representing knowledge for a chosen field,
integrating data from different sources, and supporting various semantic applications [170].

In this study, the ontology enables systematic organization of publication information ex-
tracted via the PRISMA methodology, standardizing data to facilitate consistent comparison
and categorization of publications. The Protégé program (version 5.6.4) was used for creat-
ing the ontology. This tool allows easy modeling and visualization of ontology structures,
which facilitates the organization and analysis of data, especially in complex areas such as
publication analysis [171]. In this study, Protégé was used for creating the ontology, and
WebVOWL [172] was used for the ontology visualization.

Figure 4.16 shows the ontology created for CNN architecture applications in remote
sensing publications. The ontology consists of seven main classes: Publication, CNN,
Dataset, ML_Technique, Domain, Metric, and Application. The Publication class stores
bibliographic information (title, abstract, authors, year, etc.). The CNN class includes dimen-
sional variations (1D to 4D-CNN) and connects to ML_Techniques through usesTechnique
property. The Dataset class, identified by satellite name, links to CNNs through provides-
DataFor and to Domain class which enumerates specific areas (Agriculture, Geohazards,
Urban, Vegetation, Water, Others). The Application class represents practical CNN imple-
mentations, connecting to CNN, Dataset, and Domain classes. The ML_Technique class
includes Classification, Regression, Segmentation, Compression, and ImageEnhancement,
each associated with specific metrics. The Metric class, with its subclasses (Classification-
Metric, RegressionMetric, SegmentationMetric), captures various performance measures.
ClassificationMetric and SegmentationMetric share common evaluation metrics including
accuracy, F1-score, precision, recall, kappa, pixel accuracy, user accuracy, and producer
accuracy (all ranging from 0 to 1). SegmentationMetric additionally includes specific mea-
sures such as IoU, MIoU and Dice coefficient. RegressionMetric uses different evaluation
measures: RMSE, MAE and R2Score.

The developed ontology facilitates systematic analysis of CNN architectures in remote
sensing applications by establishing clear relationships between publications, their im-
plemented architectures, and achieved results. This structured representation enables re-
searchers to effectively compare different CNN approaches across various domains and ap-
plications, while maintaining consistent measurement of their performance through stan-
dardized metrics.
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Figure 4.16. Ontology visualization generated with WebVOWL
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Chapter 4: SYSTEMATIC LITERATURE REVIEW OF CNN ARCHITECTURES IN
MULTISPECTRAL IMAGERY

4.3.5. Limitations and Future Work

This systematic review covers a wide range of keywords related to the topic in three different
databases, so it may have missed some relevant literature. For example, studies that do not
explicitly mention the term ’remote sensing’ but only the name of the satellite could have
been overlooked. Moreover, non–English studies were excluded, potentially affecting the
geographic diversity of included publications. Additionally, publications that were not open
access or inaccessible could not be further examined to extract relevant information. Due to
the large number of studies, specific knowledge gaps within each satellite, domain, CNN,
and machine learning technique are not extensively explored. Future work could narrow its
focus to allow for a more detailed assessment of knowledge gaps, such as by concentrating
on a single CNN model within a specific domain. Additionally, an evaluation of the risk of
bias or quality of the reviewed studies should be included.

4.4. Conclusion

This research investigated the trends in the application domain of CNNs, the type of satellite
data and employed machine learning techniques, with an emphasis on understanding how
the degree of convolution affects model outcomes in relation to the characteristics of specific
remote sensing tasks. Most of the papers were published in peer–reviewed journals and used
a 3D CNN implementation. In addition, the majority of publications on 1D, 2D and 3D
CNNs focused on solving problems in the field of agriculture and using Sentinel–2 satellite
data. However, due to the limited sample size (three publications), no definitive conclusions
could be drawn for 4D CNNs.

The predominant machine learning technique used by CNN is classification. In the
’Urban’ domain, 3D–CNN achieved the highest accuracy (95.00%), followed closely by
2D–CNN (94.09%). The ’Water’ domain showed interesting variation, with 1D–CNN
demonstrating the best performance (96.17%), while 2D–CNN had notably lower accuracy
(69.44%). Due to the small number of publications and the diversity of problems within
the domains addressed by CNNs for the machine learning regression technique, no general
conclusions could be drawn. The same applies to the publications that used the machine
learning segmentation technique, as there were only 16 studies.

This systematic review, supported by ontological knowledge organization, identified a
significant research gap: no previous studies have compared the performance of 1D, 2D, 3D,
and 4D convolutional neural networks (CNNs) on the same or similar tasks. This emphasises
the need for comprehensive benchmarking studies to evaluate these CNN variants on repre-
sentative tasks using the same dataset. Such effort is crucial for understanding the strengths
and limitations of each CNN type and for guiding future applications in this field.
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5. EVALUATION OF 1D–CNN MODEL

This chapter describes the development and evaluation of a 1D convolutional neural net-
work (1D-CNN) specifically designed for the estimation of Secchi disk depth (ZSD) using
multispectral Sentinel-3 OLCI images as a representative regression analysis. This work
contributes to developing new methods for predicting spectral phenomena in remote sens-
ing by utilizing the capabilities of CNNs. Although ZSD is typically a point measurement,
applying the model to satellite imagery demonstrates its potential to monitor changes over
larger areas and overcome the limitations of traditional methods that are manual, costly, and
dependent on human effort and capabilities.

This chapter is written based on paper [141] and is organized into several sections to
evaluate the performance and applicability of the 1D-CNN model for predicting Secchi disk
depth. It begins with an overview of recent studies on Secchi disk depth and the application
of remote sensing in water quality analysis. This is followed by a detailed explanation of the
materials and methods, including the study area, the creation of the dataset – a combination
of official measurements and citizen contributions – and the model architecture. The results
section presents the quantitative performance of the 1D-CNN model and comparisons with
other regression algorithms, as well as the parameter kd_z90max, which is often used as
a proxy for Secchi disk depth, obtained using the Case-2 Regional CoastColour (C2RCC)
algorithm. The chapter concludes with a discussion of the accuracy of the model, its lim-
itations, its potential application in other regions and its implications for long-term water
quality monitoring.

5.1. Introduction

The Secchi disk depth (ZSD) is a quantitative measure that indicates the ’transparency’ or
’clarity’ of the water in a body of water such as a lake or sea. Secchi disk depth is the depth
at which a circular disk, known as a Secchi disk, is no longer visible when lowered into the
water [173]. It serves as an important indicator of water quality as it reflects the amount of
suspended particulate matter (SPM) present, which includes materials such as algae, clay, silt
and others. In general, the clearer the water, the deeper the Secchi disk can be seen [174].
The relationship between ZSD and SPM is complex because SPM is influenced by several
factors, including ZSD, chlorophyll-a (Chl-a) and colored dissolved organic matter (CDOM).
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Chapter 5: EVALUATION OF 1D–CNN MODEL

While ZSD can indicate potential water quality issues, it cannot serve as a direct indicator for
measuring SPM. For a comprehensive assessment of water quality, it is necessary to analyze
additional parameters such as Chl-a, CDOM and SPM [175]. However, measuring these
parameters requires specialized instruments and additional laboratory analysis, making the
process time-consuming and costly. Nevertheless, these water quality parameters in combi-
nation with Secchi depth provide a more detailed understanding of water quality and can help
identify specific sources of pollution or other water quality issues. In addition, Secchi depth
is often used in research studies dealing with aquatic ecology and the functioning of aquatic
ecosystems. It enables the study of the impact of human activities on water bodies, such as
pollution, nutrient loading and land use changes. In agricultural areas, for example, exces-
sive nutrient input from fertilizers can lead to strong algae growth and a decrease in water
clarity. In addition, Secchi depth is valuable for assessing the effectiveness of water manage-
ment strategies and identifying areas where water quality improvements are needed [176].
Overall, the combination of Secchi depth and other water quality parameters contributes to
a more comprehensive and informed understanding of water quality conditions, enabling
better water quality management and protection measures.

Water quality assessment traditionally involves analyzing the physical, chemical and bi-
ological properties of field samples in a laboratory. Waters are often categorized as Case-1
or Case-2 based on their optical properties. Case-1 waters are mainly found in open oceans
and stratified shelf seas, while Case-2 waters include coastal areas and estuaries influenced
by suspended sediments and colored dissolved organic matter [177–179]. It is worth noting
that the classification boundaries between Case-1 and Case-2 are not always clear [180].

Earth observation has proven to be a valuable tool [181] to meet the challenges of water
management. Improvements in computer technology and applications have enabled remote
sensing techniques to monitor and detect changes on a large scale, which is not possible with
traditional in situ measurements. Remote sensing enables the monitoring and assessment
of water quality indicators such as Chl-a [182, 183], turbidity [183, 184], total suspended
matter (TSM) [185], Secchi disk depth (ZSD) [186–188], CDOM [189], etc. In addition,
it is possible to estimate certain parameters by measuring another related parameter. For
example, a correlation can be established between Secchi depth and turbidity [190]. In situ

Measurements of turbidity can be measured with instruments such as nephelometers or spec-
trophotometers [191].

Three approaches to interpreting ’water color’ are described by [192]: empirical, semi-
empirical, and analytical. Empirical methods use statistical relationships and spectral proper-
ties to estimate parameters from remotely sensed data [193]. For instance, nonlinear models
based on Kd(PAR) and 1/ZSD have been developed [194–196]. Semi-empirical methods are
often used to study the optical properties of Case-2 waters, combining physical and spec-
tral information to create algorithms that relate to measured water parameters. However, the
complexity of Case-2 waters, especially in inland turbid lakes, can sometimes cause these
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Chapter 5: EVALUATION OF 1D–CNN MODEL

algorithms to fail [197]. Analytical methods, on the other hand, estimate the concentration
of water constituents based on absorption and backscatter coefficients, using reflected light
from remotely sensed data [198]. Efforts have been made to link Secchi depth to PAR or
visible solar radiation (VSR) [199–203], but measuring these parameters is often expensive
and time-consuming [202].

Machine learning methods have shown promise in estimating the optical properties of
water bodies, as discussed by [204]. Thus, [205] evaluated the clarity of Brazilian inland
waters by applying various machine learning algorithms, including Random Forest, Extreme
Gradient Boosting and Support Vector Machines, together with semi-analytical algorithms
for querying ZSD using Sentinel-2 imagery. Similarly, [206] and [207] used random forest
regression on Sentinel-3 OLCI and Landsat-4, -5, -7, and -8 imagery to estimate ZSD.

While machine learning algorithms have proven successful on various environmental
problems, they often require large amounts of high-quality data to perform well. Official
measurements may not be sufficient for achieving desired performance. To overcome this
challenge, citizen science is becoming increasingly popular. In this approach, the public is
encouraged to collect data using simple, low-cost devices [208]. Programs such as LAKE-
WATCH [209] and the Secchi Disk Project [210] have been launched to harness citizen
science. These initiatives can generate significant amounts of data for more frequent and
focused observations [211]. Recent research suggests that data collected by volunteers can
be as reliable as official data [209, 212]. However, satellite remote sensing makes it possible
to observe larger areas. Although existing satellite products generally align with measured
data [213], there is still a need for calibration or the development of new products using dif-
ferent data sets. The validation of Landsat-8 ZSD products using official and citizen science
data emphasises the need for large data sets to achieve a more accurate ZSD estimation [214].
Expanding data collection through the involvement of citizen scientists can therefore im-
prove the calibration of remote sensing products, leading to better environmental monitoring
and management.

Recent studies have highlighted significant progress in using deep learning to predict
Secchi depth, with promising results in estimating water quality parameters. These studies
show that deep learning, particularly CNNs and recurrent models, can effectively capture
complex relationships between remote sensing reflectance (Rrs) data, optically active con-
stituents (OACs), and non-OACs to retrieve accurate water quality information [215–219].
For point parameters like water quality indicators (e.g., Chl-a, ZSD), it is appropriate to use
the spectral vector of an individual spatial pixel to identify a specific parameter value. A
1D-CNN is an effective method for this, as it processes raw spectral vectors and outputs
deep spectral features for classification [96]. Additionally, 1D-CNNs have been successfully
applied to detect water quality parameters such as Chl-a concentration in inland water bod-
ies [137,220], classify points (sea-land) using bispectral bathymetric echo [221], and classify
land use and land cover in hyperspectral imagery using spectral signatures [79].
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5.2. Materials and Methods

5.2.1. Study Area

Figure 5.1 shows the study area of the northern Adriatic Sea, which is located near the coasts
of Croatia and Slovenia. The Adriatic Sea is a part of the Mediterranean Sea between the
Balkan and the Apennine Peninsula extending southeast to the Otranto Sill, where a water
exchange with the Mediterranean Sea takes place [222]. The maximum depth of the Adriatic
Sea is 1233 m, while the average is 259.5 m. The depth of the sea increases from the north-
western basin, which is only 15 m deep, to the south-eastern basin, where the depth reaches
780 m [223].

The Adriatic Sea is famous for its natural beauty and rich biodiversity, which is why it
is often the destination of many tourists during the summer months. It is also home to many
plant and animal species and thus provides food for the population living along the coast
and is suitable for the development of numerous industries. Traditionally, it is considered
a clean and unpolluted sea. Nevertheless, it is important to continuously monitor the status
and trends of marine quality in these waters. Timely detection of deterioration in sea quality
can prevent negative impacts on the health of the people and species living in the sea and
protect biodiversity.

This study area was selected for several key reasons. Regular monitoring activities by
local research institutions provide extensive in situ measurements and historical data records,
providing a robust dataset for model validation. Furthermore, the geographical position of
the northern Adriatic Sea ensures consistent coverage by Sentinel-3 OLCI satellite imagery
throughout the year. The regional expertise available through collaboration with local marine
research institutes and environmental monitoring agencies further supports the comprehen-
sive analysis of water quality parameters in this area.

5.2.2. Secchi Disk Depth

The Secchi disk is a common instrument used to measure the clarity of water by determining
the depth at which the disk disappears from view. It is a simple and effective method in
which a white disk is lowered into the water and the depth at which it is no longer visible is
recorded. The depth at which the Secchi disk is visible is measured in meters (m).

Secchi disk measurements were collected from three different sources. For the Gulf of
Trieste, the data came from the National Institute of Biology, Marine Biology Station in
Piran. Measurements for the Croatian coastline were sourced from Legal entity for water
management - Hrvatske vode and the Secchi Disk Project website [210], which includes
volunteer-contributed data. The measurements from the National Institute of Biology and
Hrvatske vode followed standard protocols for official monitoring, ensuring their reliability
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Figure 5.1. Map of the Adriatic Sea showing the locations of Secchi disk depth
measurements (shown in Plate Carrée projection; adapted from [141])

and accuracy. It is important to note that the Secchi disk measurements of the Secchi Disk
Project were provided by volunteers and that the specific measurement conditions for these
data points are not available. Nevertheless, the volunteer dataset shows a similar range and
distribution to the official measurements, so it was used without modification. Not all mea-
surements were directly included in the study. Satellite data processing techniques were used
to ensure the quality and accuracy of the dataset. The data points were adjusted based on the
satellite data when clouds were detected over the measurement locations to reduce the influ-
ence of cloud interference. This was necessary due to the inability to control the conditions
of the in situ measurements.

The spatial distribution of all in situ measurements, which comprise a total of 589 mea-
surements between May 2016 and September 2021, is shown in Figure 5.1. This figure
shows the locations of the monitoring sites, with some sites having multiple measurements
taken during the monitoring period. The Croatian dataset consists of 452 measurements, the
Slovenian dataset of 118 measurements and the Secchi Disk Project dataset of 19 measure-
ments. Figure 5.2 illustrates the probability distribution of the ZSD values from the Croatian,
Slovenian and Secchi Disk Project datasets. This distribution helps to understand the range,
concentration and variability of ZSD values within each dataset.

In addition, Figure 5.3 shows the statistical details of the in situ measurements for each
year. This includes the number of samples (count), the minimum and maximum ZSD values
presented as vertical black lines (whiskers), the standard deviation (σ) which indicates how
much the ZSD values vary from the average, and the mean value which gives the average ZSD

across the dataset shown as a blue horizontal line .
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Figure 5.2. Probability distribution of the measured ZSD values in the Croatian, Slovenian,
and Secchi Disk Project datasets (Adapted from [141])

Figure 5.3. Statistical characteristics of in situ ZSD (m) through years

5.2.3. Sentinel-3 OLCI Data

The Sentinel-3 mission, jointly operated by the European Space Agency (ESA) and the Euro-
pean Organization for the Exploitation of Meteorological Satellites (EUMETSAT), provides
regular ocean and land observation services. This mission includes the Sentinel-3A satellite,
which was launched on February 16, 2016, and the Sentinel-3B satellite, which was launched
on April 25, 2018. The main instruments on these satellites are the Ocean and Land Colour
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Instrument (OLCI), the Sea and Land Surface Temperature Radiometer (SLSTR) and the
Synthetic Aperture Radar Altimeter (SRAL). OLCI, an imaging spectrometer with 21 spec-
tral bands ranging from 390 nm to 1040 nm, offers a spatial resolution of 300 meters and
revisits the same location every day, making it suitable for studying the Adriatic Sea. OLCI is
widely used to study the open oceans and coastal waters, measuring sea surface topography,
temperature and color [224].

For this study, 185 Sentinel-3 OLCI Level-1B TOA (Top Of Atmosphere) satellite images
were used for the period from May 2016 to September 2021. The images were downloaded
via the Sentinel Hub (Credit: Modified Copernicus Sentinel data 2016-2021/Sentinel Hub)
[225] [226] using Python. They were selected based on the data from in situ Secchi disk
depth measurements, analyzing only images from these specific dates and locations. Cloud-
based filtering was applied to ensure high data quality.

The Sentinel Hub EO Browser processed the images and converted TOA radiance to
TOA reflectance by correcting for atmospheric effects such as Rayleigh scattering, absorp-
tion and emission by atmospheric gasses and aerosol effects. This process provided the TOA
reflectance values that were used to estimate the Secchi disk depth. The normalized re-
flectance was calculated using the formula (5.1) from the Copernicus Sentinel-3 OLCI Land
User Handbook [227]:

RTOA = π∗ (LTOA/E/cos(θ)) (5.1)

where RTOA represents TOA reflectance, LTOA is TOA radiance, E stands for solar ir-
radiance and θ is the solar zenith angle. For this study, the reflectance values of 21 TOA
Sentinel-3 OLCI bands were extracted for each in situ measurement. Instead of applying at-
mospheric correction algorithms such as POLYMER [228], SeaDAS [229] or C2RCC [32] to
all 185 different scenes (each scene contains 21 .tiff images of Sentinel-3 OLCI bands), the
raw reflectance data from Sentinel-3 OLCI were used directly. Performing atmospheric cor-
rections on such a large dataset would complicate the automated execution of the methodol-
ogy. In addition, the dynamic and changing conditions of the coastal atmosphere, especially
in regions such as the Adriatic Sea, pose a challenge for standard atmospheric correction
methods. The authors in [230] point out that no single atmospheric correction algorithm is
consistently superior to others in coastal areas. The L1 satellite data was used without apply-
ing atmospheric correction, allowing the CNN model to learn and account for atmospheric
effects on its own. This approach leverages the ability of machine learning algorithms to
handle raw reflectance values directly, bypassing the need for explicit atmospheric correc-
tion during preprocessing [231].
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5.2.4. Dataset Construction and Preprocessing

To ensure the satellite dataset’s quality, the Sentinel-3 OLCI images were pre-processed.
Cloud effects in the dataset were removed using band Oa17. Band Oa17 has a wavelength
of 865 nanometers in the near-infrared and can be used for atmospheric, aerosol and cloud
correction as well as for co-registration of pixels [227, 232]. The typical range of Sentinel-3
OLCI reflectance values for a given band is 0-0.4, however highly reflective surfaces like
clouds, can have reflectance values above 1 [226]. The satellite scenes of the study area were
examined with the QGIS tool and it was found that the band Oa17 has values above 0.17 for
land and cloud pixels. Figure 5.4 shows the mask created by applying a threshold value of
0.17 to the satellite image of the Oa17 band for the area of Kaštela Bay and Brač Channel
in Croatia. The yellow color indicates pixels that have a value greater than 0.17, i.e. pixels
related to land and clouds. The blue color indicates pixels that have a value of 0.17 or less,
i.e. pixels related to the sea. To maintain data diversity in the final dataset, rows in dataset
with Oa17 band values greater than 0.17 were retained. Instead of removing them, they were
assigned a Secchi depth value of zero, which means that the depth of the Secchi disk below
the cloud cannot be estimated.

It was observed that cloud shadows over land could cause some land pixels to be incor-
rectly classified as sea pixels. Cloud shadows are darker due to the higher proportion of
diffuse solar radiation, making them difficult to distinguish from dark surfaces with similar
spectral signatures like water [233]. This issue, along with atmospheric correction, is left
for the proposed model to learn and address independently to achieve reliable Secchi depth
predictions under these constraints.

Finally, each row of the constructed dataset for training and testing is defined as follows:

Oa1 Oa2 Oa3 ... Oa21 Secchi

0.185 0.171 0.141 ... 0.025 16

where Oa1 to Oa21 represent the band values for each location corresponding to an in

situ Secchi measurement value, labeled as Secchi. To ensure accurate match-ups between
satellite and field measurements, the data were aligned based on the same sampling date and
the latitude/longitude coordinates of the measurement locations. Although the exact time of
the in situ measurements was not available, match-ups were made using the measurement
date. This approach allowed the integration of satellite band values (Oa1 to Oa21) with the
corresponding Secchi depth measurements, forming the final dataset for training and testing
purposes.

Figure 5.5 depicts the spectral values of Sentinel-3 OLCI TOA reflectance for various in

situ Secchi depth measurements. The plot compares the spectral reflectance for the maximum
Secchi depth (30 m), the minimum Secchi depth (2 m) under clear skies, and the minimum
Secchi depth (1 m) under cloud cover. The spectral curves for the maximum and minimum
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Figure 5.4. Cloud and land mask based on band Oa17 values for the area of the Kaštela
Bay and Brač Channel (Croatian coast) on August 2, 2020 (Adapted from [141])

depths in cloud-free conditions follow similar patterns but differ in magnitude, particularly
in the visible range of the electromagnetic spectrum. However, the curve for the minimum
Secchi depth under cloudy conditions shows significantly higher spectral responses, espe-
cially in the infrared region where the Oa17 band is located, which is often used to detect
clouds.

5.2.5. 1D-CNN Architecture

Convolution is a mathematical operation used in image processing to extract features from
images using certain filters. This study applies 1D convolution to one-dimensional data, such
as time series represented by 21 values corresponding to the surface reflectances of 21 bands.
This method focuses on the spectral response of the surface pixels. The hypothesis is that
the relationship between the different band reflectances captured by the convolution encodes
the clarity of the water as measured by Secchi depth. Additional information about CNNs
are provided in Section 3.

Figure 5.6 shows a state-of-the-art 1D-CNN architecture developed for the prediction of
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Figure 5.5. One dimensional data example – Sentinel-3 OLCI TOA reflectances
corresponding to in situ Secchi values (Adapted from [141])

Secchi disk depth values. This architecture consists of three convolutional layers, a dropout
layer, a max-pooling layer and two dense layers. To prevent overfitting, a dropout layer
is included that randomly deactivates nodes during training [234]. The Rectified Linear
Unit (ReLU) activation function is used in the hidden layers. Unlike Sigmoid and Tanh
functions, which compress input values to a specific range, ReLU outputs the input directly
if it is positive and zero if it is negative. This nonlinearity allows the model to capture
complex relationships and avoid the vanishing gradient problem, resulting in faster and more
stable training [235]. The proposed 1D-CNN model was implemented using the Python
programming language version 3.8.16 [236] and its libraries Keras (version 2.9.0) [237] and
Tensorflow (version 2.9.2) [238].

Figure 5.6. Proposed 1D-CNN architecture for the Secchi disk depth prediction (Adapted
from [141])
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5.2.6. Hyperparameter Tuning

The architecture of the model is set up with hyperparameters that can be tuned during train-
ing. These hyperparameters define the architecture of the model, including the number of
convolution layers, the kernel size (the size of the convolution filter), and the number of fil-
ters. In addition, the training parameters such as the number of epochs, batch size and the
learning rate can be selected to improve the model and find the optimal model. The creation
of the model also requires the selection of a loss function and an optimizer. Building the
model also involves selecting a loss function, which measures the prediction error during
training and is defined here as the mean square error (MSE). The optimizer is an algorithm
used to find the best learnable parameters to minimize the loss function, and the one used
here is Adam [239].

To achieve the best performance, it is important to optimize the settings or hyperparam-
eters of the model. The set of hyperparameters proposed in [240] was used for this tuning
process. Figure 5.7 shows the combination of hyperparameters that led to the best results for
the 1D-CNN model. Tuning these hyperparameters is often based on trial and error, as the
optimal values can vary depending on the dataset and problem. Even small changes, e.g. in
the learning rate or batch size, can affect the convergence of the model and its final perfor-
mance. The chosen hyperparameters were crucial for good results in predicting Secchi disk
depth from satellite spectral data. The 1D-CNN model has three hidden convolutional layers
(Conv1D) that are designed to capture important spectral features and dependencies. These
Conv1D layers recognize patterns in the spectral data and allow the model to extract infor-
mation needed for accurate predictions. To further process and learn non-linear relationships
between the extracted features and the target output, two hidden dense layers were added
to the model. The number of hidden layers in a neural network is important for modeling
complex relationships in the data. More layers can increase the model’s ability to capture
complicated patterns, but the effects vary depending on the problem. Adding more layers
can improve accuracy in some cases, but it can also lead to overfitting. Finding the right bal-
ance between model complexity and generalization is the key to optimal results. The final
1D-CNN model contains 17 009 learnable parameters.

For modeling the 1D-CNN, the data was randomly split into training, validation, and test
sets. This random distribution ensured that the samples were evenly divided among the sets,
with 60% for training (355 samples), 20% for validation (117 samples), and 20% for testing
(117 samples).

5.2.7. Accuracy Assessment

According to [241], the accuracy assessment measures data quality and helps map users
to assess how useful a thematic map is for their specific needs. The accuracy assessment
involves three main components:
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Figure 5.7. Hyperparameters used in the 1D-CNN model (Adapted from [141])

• Sample design – the protocol for selecting reference sample units. In this study, the
Secchi disk value serves as the ground truth data for the classification of remote sensing
imagery and represents the point sampling unit.

• Response Design – the protocol for determining the land- cover classification for each
sampling unit. In this case, the response design for each Secchi sampling unit is a
single pixel of the Sentinel-3 OLCI sensor, which has a spatial resolution of 300 ×
300 meters. The sampling unit is a specific location on the ground corresponding to
the center of the pixel, and the measurement is the Secchi value assigned to that pixel
based on the remote sensing data.

• Analysis and estimation protocol – this protocol compares the estimated continuous
data with the ground-truth data (analysis) and uses the results to make inferences about
the entire population (estimation).

To assess how accurately the 1D-CNN model predicts the continuous variable Secchi, the
following analysis techniques and measures from [242] were used in this study:
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• Mean Absolute Error (MAE) – measures the absolute differences between the pre-
dicted values (yi) and the measured values (xi), and takes the average of these differ-
ences where N is the total number of data points. A low MAE value indicates that the
model is better at predicting the target variable [243]:

MAE =
1
N

N

∑
i=1

|yi − xi| (5.2)

• Relative Mean Absolute Error (RMAE) – a unit- and scale-independent version of the
MAE, calculated by dividing the MAE by the mean value of the validation dataset
[244]:

RMAE =
MAE

x̄
(5.3)

• Root Mean Squared Error (RMSE) – the square root of the average of the squared
differences between the predicted (yi) and the actual measured values (xi). A low
RMSE means that the model is more accurate in predicting the measured values [245,
246]:

RMSE =

√
1
N

N

∑
i=1

(yi − xi)2 (5.4)

• Relative Root Mean Squared Error (RRMSE) – a unit/scale-independent measure, cal-
culated by dividing the RMSE by the mean of the validation dataset (x̄). [244]:

RRMSE =
RMSE

x̄
(5.5)

• The coefficient of determination (R2) is a statistical measure that shows how much of
the variance in the dependent variable can be predicted from the independent variables
in a linear regression model [247]. It indicates how well the model fits the data, with
values ranging from 0 to 1; a higher R2 means a better fit. The formula to calculate R2

is as follows:

R2 =
∑

n
i=1(ŷi − y)2

∑
n
i=1(yi − y)2 = 1− ∑

n
i=1(yi − ŷi)

2

∑
n
i=1(yi − y)2 (5.6)

where yi is the value of the i-th sample, y is the mean value of the variable y and ŷi is
the predicted value for the i-th sample

• Pearson’s correlation coefficient (r) – measures the strength and direction of the linear
relationship between two variables, with values ranging from -1 to 1. The correlation
between the variables x and y is calculated using the following formula [248]:

r =
∑

N
i=1(xi − x̄)(yi − ȳ)√

∑
N
i=1(xi − x̄)2

√
∑

N
i=1(yi − ȳ)2

(5.7)
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where yi are the predicted values, xi are the measured values and x̄ and ȳ are the mean
values.

5.2.8. Overview of Regression Algorithms for Comparison with
1D–CNN

Another way to demonstrate the strong performance and effectiveness of the proposed 1D-
CNN model is to compare it with other commonly used algorithms in GIS and remote sensing
[249], including both traditional regression methods (such as linear regression and ridge
regression) and algorithms adapted for regression tasks (such as Decision Tree regression,
Random Forest regression, Support Vector Machine regression, and Naive Bayes regression).

• Linear regression is a simple algorithm that models the relationship between a depen-
dent variable and one or more independent variables as a linear function. The goal is
to find the best fit line that minimizes the difference between the predicted and actual
values [250].

• Ridge regression is a type of linear regression that helps prevent overfitting by adding
a penalty term to the cost function. This penalty limits the size of the regression
coefficients, reducing variance and improving its generalization performance [251].

• Decision Tree regression is a non-parametric algorithm that recursively splits the data
into subsets based on the values of the input variables. Each split corresponds to a
node in a tree, and the goal is to find the sequence of splits that results in the lowest
residual sum of squares [252].

• Random forest is an ensemble learning method that combines multiple decision trees
where each decision tree in the forest is trained on a random subset of the data and
features. The final prediction is based on the average or majority vote of the individual
predictions [253].

• Naive Bayes is a probabilistic algorithm that uses Bayes’ theorem to calculate the
probability of each class given the input features. It assumes that input features are
conditionally independent given the output variable and predicts the class with the
highest probability [254].

• Support Vector Machine regression is a kernel-based algorithm that finds a hyperplane
in a high-dimensional space with the maximum margin, which separates data points
into different classes with minimal error [255].

These regression algorithms were implemented by using the scikit-learn library version
1.0.2 for Python [256]. This powerful library provides a wide range of tools for machine
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learning and data analysis including a variety of regression methods. All implemented re-
gression algorithms were applied to a dataset of 21 features and one observation (Secchi
disk depth) and used default parameters defined in the scikit-learn library. The results of the
analysis are presented in Section 5.3.2.

5.3. Results

In this section, the results of the proposed 1D-CNN model for predicting Secchi disk depth
in the eastern Adriatic Sea are presented. A comparison with traditional machine learning
regression methods is made to emphasize the superiority of 1D-CNN. Furthermore, based
on the implemented model, a map was created showing the distribution of Secchi disk depth
values throughout the study area and highlighting any observed spatial patterns or trends. For
a comprehensive overview, Figure 5.8 is attached, which illustrates the entire development
and evaluation process of the 1D-CNN model.

Figure 5.8. Flowchart of the 1D-CNN model development and evaluation process (Adapted
from [141])

5.3.1. Quantitative Algorithm Performance

First, a quantitative evaluation of the performance of the 1D-CNN model in predicting Sec-
chi disk depth is presented. The model was trained and evaluated on a system equipped
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with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 16 GB of RAM, with the com-
plete training process requiring approximately 5 hours. Table 5.1 shows how the 1D-CNN
model performed on two datasets with Slovenian and Croatian measurements. The Slovenian
dataset contains in situ data from the National Institute of Biology, Marine Biology Station
in Piran, while the Croatian dataset contains data from the Croatian water management au-
thority - Hrvatske vode. The model based on volunteer data from the Secchi Disk Project

is not included in the Table 5.1 because there were fewer than 20 data points, which is not
sufficient for training and testing the 1D-CNN model. The Final dataset in the table contains
all mentioned datasets.

The metrics in Table 5.1 were calculated for the training and test dataset, but not for
the validation part of the dataset. The validation dataset was used during hyperparameter
tuning and model selection to improve the performance of the model during training. The
final evaluation of the model was performed on an unseen, independent test dataset that was
not used for the training process. The detailed metrics used to evaluate accuracy (MAE,
RMAE, RMSE, RRMSE, R2 and r) are shown in Table 5.1 for the Slovenian, Croatian and
Final datasets. These metrics were calculated for both training and test datasets, with the
test dataset providing an unbiased assessment of the model’s ability to generalize to new,
unseen data. The results in this table show that including more data from different sources,
even volunteered data without quality control, results in a model that generalizes better and
predicts Secchi disk depth more accurately.

For the Slovenian and Croatian datasets, the coefficient of determination (R2) ranges
from 66% to 83% on the test dataset, suggesting that the model can explain a considerable
percentage of the variance in the Secchi depth estimates. In the test dataset, the root mean
square error (RMSE) is greater than two meters, indicating some prediction errors. The
predictions of the model in the Slovenian and Croatian test datasets deviate on average by
about 30% from the actual Secchi depth values, corresponding to the relative root mean
square error (RRMSE).

The difference between the training and test performance metrics suggests that the 1D-
CNN model may be overfitting the Slovenian and Croatian datasets. While the model per-
forms well during training, with low RMSE and RRMSE values, its performance on new,
unseen data (test dataset) is slightly less accurate, leading to higher errors. Despite this,
the 1D-CNN model shows promise in predicting Secchi depth, as indicated by the high R2

values (train: 0.894, test: 0.890) and relatively low MAE (train: 0.014, test: 0.014), RMSE
(train: 0.024, test: 0.023), RMAE (train: 0.167, test: 0.167), and RRMSE (train: 0.288, test:
0.276) in the final dataset. These results suggest that the model is capable of explaining a
substantial portion of the variance and making accurate predictions on unseen data.

Figure 5.9 provides a visual representation of the prediction errors of the model for the
final test dataset. The graph shows the differences between the predicted and actual Sec-
chi depth values in meters (m). The strong linear relationship between the predicted and
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Table 5.1. Comparison 1D-CNN performance for different datasets (Adapted from [141])

Dataset MAE RMAE RMSE RRMSE R2 r
Slovenian measurement
dataset

Train 0.012 0.241 0.019 0.361 0.815 0.904
Test 0.012 0.239 0.022 0.499 0.666 0.844

Croatian measurement
dataset

Train 0.015 0.187 0.020 0.305 0.915 0.929
Test 0.021 0.193 0.028 0.325 0.830 0.850

The final dataset Train 0.014 0.167 0.024 0.288 0.894 0.949
Test 0.014 0.167 0.023 0.276 0.890 0.944

measured values is evident from the plotted line that closely follows the data points. This
indicates a good correlation between the predictions of the model and the actual Secchi depth
values and reflects a high accuracy. For a more accurate assessment of the prediction accu-
racy, statistical metrics such as the mean absolute error (MAE) and root mean square error
(RMSE), as given in Table 5.1, should be considered.

The error histogram in Figure 5.10 illustrates the distribution of errors between the 1D-
CNN model’s predictions and the in situ Secchi disk depth measurements. The errors follow
a Gaussian distribution centered around zero, indicating that the model’s predictions are
generally accurate and consistent across the dataset.

Figures 5.9 and 5.10 further demonstrate the model’s strong performance in predicting
Secchi disk depth for the final test dataset, which includes both Slovenian and Croatian
measurements. The model shows low prediction errors, with a Root Mean Squared Error
(RMSE) of 0.024 for the training data and 0.023 for the test data, indicating that it fits the
training data well and generalizes effectively to new, unseen data. The Mean Absolute Error
(MAE) is also low, at 0.014 for both datasets, meaning that the model’s predictions are very
close to the actual values on average.

The 1D-CNN model demonstrates a good fit with an R-squared value of 0.894 for the
training data and 0.890 for the test data. The similarity in these R-squared values suggests
that the model is not overfitting and can generalize well to new data. The strong correla-
tion between the predicted and measured values is further supported by Pearson correlation
coefficients of 0.949 for the training data and 0.944 for the test data.

Overall, the model performed well in terms of accurate predictions with low error and
was able to generalize well to new data. The fact that the values of the individual metrics are
similar for the training and test datasets indicates that the model does not overfit the training
data and is able to generalize well to unseen data.

5.3.2. Performance Analysis of 1D-CNN and Commonly Used
Regression Algorithms

Table 5.2 shows the results of the analysis and compares the accuracy metrics for each algo-
rithm described in Section 5.2.8. The findings indicate that the regression algorithms were
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Figure 5.9. A prediction error plot shows the difference between the predicted values and
the measured values of Secchi depth in meters (m) on the final test dataset (Adapted

from [141])

Figure 5.10. Histogram of errors of 1D-CNN model on the final test dataset (Adapted
from [141])
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less effective in predicting Secchi disk depth compared to the proposed 1D-CNN model, as
shown in 5.1.

The Linear, RidgeCV and Bayesian Ridge Regression models have difficulty finding the
complex relationships within the data. The MAE, RMSE and R2 metrics suggest that they
cannot effectively predict Secchi disk depth. The Decision Tree model outperforms on the
training data with an R2 of 0.999, while it fails on the test data with an R2 of 0.597, sug-
gesting that it became too complex during training and could not generalize to new data.
The Random Forest model, which is an ensemble method and can usually improve predic-
tion accuracy, could not outperform the 1D-CNN model. This could be due to the fact that
it reaches its limits when capturing finer patterns in the data. Support Vector Regression
performed particularly poorly with a negative R2 in the test dataset, suggesting that it was
difficult to fit to the data or was not the best choice for this particular problem. Overall,
the 1D-CNN model performed better than the regression algorithms as it was able to extract
meaningful features and accurately model the input-output relationship, especially given the
complexity of predicting Secchi disk depth. This analysis highlights the importance of fea-
ture extraction and the ability of deep learning models to effectively process complex data
patterns.

None of the regression models used to compare 1D-CNN could achieve an R2 of more
than 0.8, with the exception of the Decision Tree model but only for the training dataset
The RMSE value for both data sets (train and test) was greater than 3 m for all regression
models, while the RMSE value of the 1D-CNN model was less than 2.5 m for both data sets.
1D-CNN is not only better correlated with actual measured values, but also predicts values
with lower absolute error.

Table 5.2. Comparison of regression algorithms metrics (Adapted from [141])

Model Dataset MAE RMAE RMSE RRMSE R2 r

Linear Train 0.029 0.334 0.039 0.448 0.727 0.853
Test 0.030 0.372 0.041 0.500 0.638 0.809

RidgeCV Train 0.041 0.462 0.052 0.593 0.514 0.718
Test 0.038 0.472 0.049 0.615 0.476 0.698

Decision Tree Train 0.000 0.002 0.002 0.023 0.999 0.999
Test 0.022 0.327 0.043 0.635 0.597 0.795

Random Forest Train 0.029 0.315 0.044 0.482 0.643 0.802
Test 0.029 0.417 0.044 0.673 0.584 0.769

Bayesian Ridge Train 0.029 0.342 0.039 0.451 0.724 0.851
Test 0.029 0.350 0.039 0.474 0.665 0.819

Support Vector
Regression

Train 0.064 0.730 0.073 0.827 0.039 0.754
Test 0.063 0.760 0.071 0.865 -0.106 0.745
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5.3.3. The Spatial Distribution of Secchi Disk Depth

While in situ measurements are performed at specific locations depending on the sampling
strategy and ZSD presents discrete values for one location only, a model trained on in situ

samples can be extrapolated to predict ZSD for a large scene of the study area. This enables us
to investigate the spatial distribution of Secchi disk depth in the Adriatic Sea using a 1D-CNN
model applied to remote sensing imagery. Figure 5.11 shows a map of the study area created
using the 1D-CNN model in Python and visualized with the open source software QGIS
3.10.10-A Coruña [257]. The results of the model show that the Secchi disk depth is greatest
in the areas farther from the coast and lowest in the northern region and near the coastline.
The reason for the lowest Secchi disk depth values in the northern region of the Adriatic
is the Po, Adige and Isonzo/Soča rivers, which contribute to the low water transparency in
this region. They influence the concentrations of dissolved nutrients, biological productivity,
salinity and stratification in this part of the Adriatic Sea [258]. For this reason, the sea
is very shallow with an average depth of 35 m. In addition, Figure 5.11 shows that the
coastal areas surrounded by certain islands and sheltered regions such as bays also have lower
water transparency. These areas are of particular concern for water quality, especially near
mariculture facilities and bathing areas. Several numerical models incorporate Secchi depth
into equations related to the die-off of pathogenic microorganisms [259–262]. In addition, a
sensitivity analysis [263] has shown that Secchi depth is an important environmental factor
in determining the decay of Escherichia coli in coastal waters. The improved spatial and
temporal resolution provided by the 1D-CNN model will increase the accuracy of water
quality modeling.

To prove the effectiveness of the proposed 1D-CNN model and overcome the limita-
tions of the sparse and expensive in situ measurements, the model is compared with the
well-known Case-2 Regional CoastColour (C2RCC) algorithm [32]. Figure 5.12 shows the
map of the kd_z90max product created with version 1.0 of the C2RCC processor within the
Sentinel Application Platform (SNAP) software. The kd_z90max product is an indicator of
water clarity that is often used as a proxy for Secchi disk depth. It represents the depth of
the water column from which 90% of the radiation emitted from the water is derived. The
product kd_z90max corresponds to 1/Kd_min, where Kd_min is the average attenuation co-
efficient of the irradiance in the three bands with the lowest Kd . The unit of measurement
for kd_z90max is meter (m) [264,265]. In addition to kd_z90max, the C2RCC processor can
also retrieve other important oceanic ecosystem parameters, such as chlorophyll concentra-
tion (conc_chl), total suspended matter (conc_tsm), and two parameters related to Gelbstoff
(also known as yellow substances or colored dissolved organic matter, CDOM): the absorp-
tion of organic detritus and Gelbstoff at a wavelength of 443 nm (iop_adg), and the Gelbstoff
absorption coefficient at the same wavelength (iop_agelb). These parameters provide valu-
able information about the composition and behavior of the ocean [265].
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Figure 5.11. The distribution of Secchi disk depth in the study area on September 3, 2021
(Adapted from [141])

Figure 5.12. The distribution of kd_z90max in the study region on September 3, 2021,
created using the C2RCC processor in SNAP (Adapted from [141])
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The comparison between the maps of the spatial distribution of Secchi disk depth created
with the 1D-CNN model (Figure 5.11) and the kdz90max product created with the C2RCC
processor (Figure 5.12) shows similar patterns of variation. The similarity can be seen in the
regions of the northern Adriatic, the Zadar archipelago and Kaštela Bay. Both maps illustrate
a consistent spatial variation of Secchi disk depth and kd_z90max, even though the absolute
values of the parameters may differ in these regions.

The satellite images from September 3, 2021 were selected for comparing the Secchi disk
depth measurements and the kdz90max values due to optimal atmospheric conditions. Due to
the limited availability of measurement data on this date, the closest available data points
were selected. These points represented diverse environmental conditions, including dif-
ferent water turbidity values, depths, and distances from the coast, making them suitable for
evaluating the predictive performance of both the 1D-CNN model and the C2RCC processor.
Table 5.3 lists the available points for September 3, 2021, showing sampling dates, locations,
in situ Secchi disk depth, and corresponding predictions from both C2RCC’s kdz90max and
the 1D-CNN model. The 1D-CNN model predicting Secchi depth outperformed the kdz90max

parameter of the C2RCC processor with a maximum error of 4 meters, compared to an error
of over 10 meters for kdz90max. Figure 5.13 illustrates the difference in prediction accuracy
between the two models and plots the Secchi disk depth and kdz90max predictions of both
models alongside the in situ measurements. The curve of the 1D-CNN model closely fol-
lows the in situ measurements, indicating a higher accuracy, while the curve for the kdz90max

predictions of the C2RCC processor shows a significant deviation, indicating a lower ac-
curacy. Results show the 1D-CNN model predicts Secchi disk depth more reliably than
C2RCC’s kdz90max parameter.

Table 5.3. Comparison of in situ secchi depth measurements with kd_z90max predicted
values from C2RCC processor and Secchi disk depth from 1D-CNN model (Adapted

from [141])

# Date Lat Lon C2RCC [m] 1D-CNN [m] In situ [m]
1 2021-09-01 45.173 14.657 11 18 22
2 2021-09-02 45.247 14.417 14 24 26
3 2021-09-03 44.787 14.157 15 21 23
4 2021-09-06 45.435 13.397 11 15 18

5.4. Discussion

In this section, the accuracy, limitations, and potential uses of the proposed model for pre-
dicting Secchi disk depth with Sentinel-3 OLCI data is discussed. It also examines possible
future applications for monitoring long-term changes in ZSD.

86



Chapter 5: EVALUATION OF 1D–CNN MODEL

Figure 5.13. Comparison of Secchi disk depth predictions using in situ measurements,
1D-CNN model, and C2RCC processor based on data from Table 5.3 (Adapted from [141])

5.4.1. Accuracy of the 1D-CNN Model

The 1D-CNN model’s performance was thoroughly assessed using metrics such as R2,
RMSE, RRMSE, MAE, and RMAE. It shows good accuracy, especially with multi-spectral
data. However, there are limitations when using specific datasets. Although R2 values show a
strong correlation between predicted and measured ZSD values, metrics like RMSE, RRMSE,
MAE, and RMAE reveal some variability and differences from actual values. This variabil-
ity is due to complex interactions between water quality factors, environmental conditions
and the limitations of the modeling approach [266]. The model was also compared with
regression algorithms and the kdz90max parameter of the C2RCC processor, both quantita-
tively and qualitatively, demonstrating its effectiveness in predicting ZSD and highlighting its
advantages over other methods.

5.4.2. Limitations

Secchi measurements depend on sufficient light to penetrate the water column and being
reflected back to the measuring device. Since these measurements are made near the surface,
knowing the reflectance at the bottom of the atmosphere (BOA) can help to determine the
Secchi depth more accurately. Sunlight travels through the atmosphere to the earth’s surface,
after which is reflected and then passed through the atmosphere again before reaching the
instrument. The first pass of sunlight can affect Secchi depth observations. Level-1 (L1)
data includes reflectance values from both passes, and atmospheric conditions may alter the
reflectance measured by the instrument.

Using 1D-CNNs for atmospheric correction might help adjust for atmospheric absorption
and focus on features related to Secchi depth. However, further research is needed to confirm
this. CNNs work by transforming reflectance values into weighted sums and differences
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through multiple layers, but the complex nature of these transformations can make it difficult
to understand their effects on atmospheric absorption. Therefore, further studies are needed
to explore the potential of CNNs for atmospheric correction in remote sensing, although this
is not the focus of this research.

Despite its promising performance, the proposed 1D-CNN model has some limitations.
The accuracy of predictions can be affected by the quality and availability of ground truth
data used for training and validation. Even though statistical analysis shows no significant
deviation between measurements taken by citizens and official measurements, Secchi depth
remains a subjective measure that cannot be validated completely independently. Addition-
ally, the model’s performance might differ in various aquatic environments due to the di-
versity in water types and optical properties. The model’s sensitivity to outliers and noise,
especially during atmospheric correction, could impact its predictive performance. Like any
machine learning model, there is a risk of overfitting to the training data [267]. Therefore,
managing hyperparameters carefully and using effective strategies to prevent overfitting is
crucial. Addressing those limitations will improve the model’s robustness and accuracy in
predicting Secchi depth across different scenarios and locations.

5.4.3. Applicability to Other Regions

The model can be applied to other data sets that have a similar structure to the data set used
in this study. Thus, the 1D-CNN model is also suitable for other regions if they have similar
water quality characteristics and spectral properties as the Croatian and Slovenian parts of
the Adriatic Sea. Furthermore, the Sentinel-3 OLCI imagery are freely accessible and can
be downloaded for different geographical areas, as the instrument has global coverage and
frequent repetitions. However, applying the model to very different water bodies might
require re-training and adjustments to account for regional differences [268]. Nevertheless,
the methodology described here for the northern Adriatic Sea can be adapted and used in
other study areas and potentially provide valuable results.

5.4.4. Future Implications for Long-term Monitoring

Predicting ZSD using remote sensing data provides an opportunity for ongoing monitoring
of water quality and environmental change. Regular tracking of ZSD provides valuable in-
formation about the state of the aquatic ecosystem, reveals trends in water clarity, and helps
identify factors or conditions that may be causing disturbance. Combining ZSD data with
other environmental indicators, such as chlorophyll-a concentration and water temperature,
allows for a thorough assessment of water quality. Long-term monitoring of ZSD can also re-
veal changes in water transparency, which is crucial for understanding the impact of climate
change, biogeochemical processes and human activities on the aquatic environment [269].
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5.5. Conclusion

This chapter presents a novel approach to address the main challenges in satellite remote
sensing for water quality monitoring. The focus is on the development and evaluation of a
1D Convolutional Neural Network (1D-CNN) for estimating Secchi disk depth (ZSD), a key
indicator of water quality parameters derived from multispectral Sentinel-3 OLCI imagery.

The 1D-CNN model was selected due to its effectiveness in processing high-dimensional
spectral data, capturing non-linear relationships and performing precise pointwise estima-
tion. This approach significantly reduces the need for manual feature processing by auto-
matically extracting complex patterns from the spectral responses of pixels, making it well
suited to the task of estimating ZSD. To further refine the model, a comprehensive dataset was
created by merging data from two official sources (one from Croatia and one from Slovenia)
with contributions from a citizen science project. This dataset spans six years and covers
a large area along the northern Adriatic coast, providing a rich basis for training the deep
learning algorithm.

The evaluation of the 1D-CNN shows that it is able to achieve high accuracy in ZSD

estimation, outperform existing methods (C2RCC) and avoid the problems of overfitting
that are common in other machine learning models. In addition, the ability of 1D-CNN
to generalize well to unseen data increases its potential for wider application in different
geographic regions with similar water quality characteristics. The results show that this
approach not only improves the accuracy but also the efficiency of water quality monitoring
by remote sensing, thus making an important contribution to the field.
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6. EVALUATION OF 2D–CNN MODEL

This chapter describes the application of a 2D convolutional neural network (2D-CNN) for
road detection using volunteer OpenStreetMap (OSM) data and multispectral satellite im-
agery (Sentinel-2). By using remote sensing and a well-trained model, it is possible to detect
roads in a more time and cost-effective way compared to traditional field-based monitoring.
The problem of road detection represents a target recognition task and can be considered as a
binary classification. Road detection is crucial for urban planning and development, as road
data can sometimes be outdated or unavailable. Moreover, road construction often requires
the removal of environmentally important green spaces, so this approach can help monitor
such changes.

The chapter is organized as follows. The introduction provides an overview of the lit-
erature on deep learning models applied to remote sensing data for road detection. The
following section describes the study area, data collection and processing, the architecture
of the proposed 2D-CNN model that performed best during hyperparameter tuning, and a
summary of the model evaluation metrics. In the results section, metrics and graphs of 2D-
CNN performance in detecting roads are provided. Moreover, the model’s accuracy and its
limitations are discussed. Finally, conclusions are drawn.

6.1. Introduction

Roads are man-made objects that presents important classes which can be useful for ur-
ban area monitoring, planning and detection, change detection of environment (e.g. defor-
estation), human population estimation, and infrastructure analysis for transportation and
telecommunication networks [270]. Traditional methods for updating spatial data, such
as road networks, are inefficient due to their high cost and time demands. In response to
that, advanced remote sensing and deep learning, particularly convolutional neural networks
(CNNs), offer a more practical and economical solution for extracting road types from high
spatial resolution images.

According to [271] over the past decade deep convolutional neural networks in optical
remote sensing imagery have proven to be highly effective for road extraction and automatic
feature extraction. The focus has been on three main elements: road areas, centerlines,
and boundaries. The most used approaches to accomplish it are based on CNNs, Fully
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Convolutional Networks (FCNs), U-net architectures and Generative Adversarial Networks
(GANs). These models offer a more practical and economical solution for extracting road
types from high spatial resolution images compared to traditional mapping methods.

Patch-based CNNs using image patches centered around pixels are utilized for feature
extraction and they are frequently used. However, road extraction remains challenging due
to the complexity of images, the presence of various road types, and occlusions (e.g., shad-
ows, cars, and buildings) that resemble road features in color and texture. While CNNs
excel at processing high-resolution imagery, mixing pre- and post-processing techniques is
recommended to further improve the accuracy of predictions. Additionally, the model’s ef-
fectiveness depends on factors such as data quality, architecture, and hyperparameters. CNNs
trained on a specific dataset may struggle with different scenes if the training data isn’t com-
prehensive enough [272].

Classifying individual pixels is challenging due to insufficient features, making the incor-
poration of contextual information crucial. To address this, [273] introduced a GPU-based
deep convolutional neural network (DCNN) that leverages a larger image context and pre-
dicts small patches of labels, improving accuracy and reducing computational costs. The
model is using a sliding window approach, overlapping patches to generate a global map
of the image. Its architecture features an encoder based on well-known backbones (e.g.,
VGG, ResNet) and includes post-processing to enhance result smoothness. Similarly, [274]
employed a single patch-based deep CNN for extracting roads and buildings from high-
resolution satellite imagery (HRSI), but with post-processing to improve performance.

A semantic segmentation approach using the Fully Convolutional Networks (FCNs) ar-
chitecture derived from the VGG convolutional neural network model was used on the Mas-
sachusetts road and building datasets which is high spatial resolution aerial imagery [275].
It was used to predict classes "road" and "building" achieving precision rate around 71%
for roads extraction and 78% for building extraction. Authors in [276] also used the Mas-
sachusetts road dataset to perform semantic segmentation. They proposed a Road Structure
Refined Convolutional Neural Network (RSRCNN) model for road extraction. It is also
based on the VGG CNN model, with additional convolutional, deconvolutional, and fusion
layers to provide structured output for road regions. The RSRCNN approach outperformed
several state-of-the-art methods, including other CNN-based approaches, in terms of pre-
cision, recall, F-score, and accuracy for road extraction. The experiments showed that the
proposed road-structure-based loss function led to faster convergence and better performance
compared to using standard cross-entropy loss. The authors demonstrated that the good per-
formance was due to the road-structure-aware loss function, not just from dataset balance.

In [277], the authors utilize high-resolution satellite imagery from the Pleiades-1A and
Geoeye satellites. They first train a convolutional neural network using thousands of 32 ×
32 pixel patches. After training, they apply the CNN to the satellite images, examining each
pixel to determine if it belongs to a road. To refine and connect the identified road network,
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they employ Line Integral Convolution (LIC), enhancing the accuracy and connectivity of
the extracted roads. The model achieved an accuracy of over 95% on the test data.

The studies mentioned above use data with a spatial resolution of 2 m or less to create
detailed maps of buildings or roads. However, such data is often expensive and limits the
ability to update the maps frequently. On the other hand, satellite data can be accessed for
free and have continuous imaging, but have limited spatial resolution (often greater than
10 m) to recognise complex features such as buildings and roads [278, 279]. In [280], the
authors propose models based on a U-Net architecture for detecting hardly visible roads in
low-resolution Sentinel-2 satellite images. They used OpenStreetMap vector data as ground
truth data. They applied the model to both single images and time series data. The results
showed that the models can detect large and medium sized roads at a low spatial resolution
(10×10 metres) of the Sentinel-2 data. Small roads are hardly visible in such data. On the
other hand, the authors in [281] used SAR data obtained from the Sentinel-1 satellite. They
implemented a semi-automatic approach for the extraction of trails and off-roads with a cor-
rectness of 68% and a completeness of 52%. The authors of [282] fused Sentinel-1 SAR and
Sentinel-2 data (at 10 m) with OpenStreetMap to detect roads and buildings. They imple-
mented a model based on Fully Convolutional Networks (FCNs) and U-Net architecture with
ResNet-34 encoder. The fusion of Sentinel-1 and Sentinel-2 data improved the detection of
roads and buildings compared to the use of individual data sources. The Intersection over
Union (IoU) metric for roads improved from 0.44 when using Sentinel-2 data to 0.60 after
the fusion.

Given the challenges associated with using low-resolution Sentinel-2 data, this chap-
ter presents a 2D-CNN model specifically applied to patches from Sentinel-2 imagery and
OpenStreetMap data. The method focuses on identifying the presence of roads within each
patch, simplifying the problem while still leveraging deep learning’s ability to manage spatial
relationships in satellite data and successfully detecting objects. This approach is expected
to enhance performance in detecting roads from Sentinel-2 data without requiring complex
multi-source data fusion. By enabling faster road detection, this method could facilitate
further analysis and improve the accuracy of generated maps.

6.2. Materials and Methods

6.2.1. Study Area

The study area is located in Split-Dalmatia County, Croatia, and is marked as a red square
in Figure 6.1. A specific part of Split-Dalmatia County was selected due to its strategic
importance. This area includes both urban regions characterized by high road density and
rural areas where road density and material vary. It also includes the A1 highway, the largest
and most modern highway in Croatia, which has four lanes. This approach ensures that a
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wide range of road types are considered.

Figure 6.1. Study area in Split-Dalmatia County, Croatia (shown in Plate Carrée
projection)

6.2.2. Dataset Construction and Preprocessing

The dataset was created by integrating road data from the OpenStreetMap (OSM) project
and Sentinel-2 satellite imagery. The OpenStreetMap project was founded in 2004 and is
a free, open geographic database of Volunteered Geographic Information (VGI) on the In-
ternet [283]. The OSM data used in this study was retrieved on June 23, 2022, while the
Sentinel-2 imagery was collected throughout 2023 from the Copernicus Data Space Ecosys-
tem Repository (Copernicus Sentinel data [2023] [284]) to ensure that the imagery is up
to date to capture all roads collected by the OSM project. Collecting imagery throughout
2023 also ensures a diversity of data that captures different weather conditions and natural
variations around the roads.

The OSM data is represented as vectors where roads are presented as polylines. The
dataset includes 14 consolidated transportation categories, organized into main road hierar-
chy (from motorways to tertiary roads), pedestrian infrastructure, special purpose ways (like
bridleways and cycleways), and other road types. Since roads are much wider and these
lines often do not align precisely with the center of the road, a shapefile was created with a
30-meter buffer around the lines to more reliably extract patches from Sentinel-2 images that
include roads. Roads passing through tunnels were excluded from the dataset,because roads
cannot be recognized on multispectral images due to the obstruction of the satellite’s line of
sight.

The Sentinel-2 images were downloaded free of charge from the Copernicus repository
via the S3 API. All images were Level-2A, i.e. they were atmospherically corrected. The
dataset included bands B01-B09, B8A, B11 and B12. Since roads are relatively narrow
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objects for satellite detection, a spatial resolution of 10 meters was used for all Sentinel-2
bands, so the bands that were not originally at 10 m resolution were resampled.

In addition, the Scene Classification Layer (SCL) band was used for each observation
to ensure that areas covered by clouds were excluded during patch creation based on the
following values for pixel classifications [285]:

• 1 - SATURATED_DEFECTIVE,

• 3 - CLOUD_SHADOW,

• 7 - CLOUD_LOW_PROBA / UNCLASSIFIED,

• 8 - CLOUD_MEDIUM_PROBA,

• 9 - CLOUD_HIGH_PROBA,

• 10 - THIN_CIRRUS.

The patch size was set to 32x32 pixels, which corresponds to an area of 320x320 meters.
To ensure a balanced dataset, an equal number of patches were extracted for the classes
"road" and "no road" across all bands for the year 2023. As this is a binary classification
task, the class "road" was labeled as "1" and the class "no road" was labeled as "0" A total
of 850,606 patches were extracted. Because of very small patch size, initially selected study
area exceeded the size of memory which could be processed. Therefore, the number of
patches for each band was limited to 400 and the maximum number of patches for each
date could be 9600, including both classes. The distribution of patches by month, based on
Sentinel-2 imagery for the year 2023, is shown in Figure 6.2. For each date in the month
for which Sentinel-2 imagery was available, the same number of patches was extracted for
both classes. At the top of each bar in the figure is the total number of patches for each
month. The pixel values ranges from 0 to 1 which were normalized using the MinMaxScaler
technique.

6.2.3. Model Implementation

In order to find the most appropriate model, Keras Tuner with the Hyperband algorithm was
used for model tuning, an effective approach to find optimal hyperparameters such as the
number of filters, kernel size, dropout rate, and learning rates with minimal computational
costs. Figure 6.3 depicts a sequential 2D convolutional neural network designed for road
detection as a result of model tuning. The input dataset is composed of grayscale images that
indicate the detection area and "road" or "non-road" objects. The dimension of the input data
is 32x32x1, where 32x32 indicates the size of an individual patch, and 1 indicates one band.

The model starts with a 2D convolutional layer that has 32 filters, a 5 × 5 kernel, and
uses the ReLU activation function. It is followed by batch normalization, which stabilizes
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Figure 6.2. Monthly distribution of "road" and "no road" patches in Sentinel-2 dataset

and speeds up the training process. A 2 × 2 Max pooling layer is then used to halve the spatial
dimensions. This is followed by two identical blocks, each containing a Conv2D layer, Batch
Normalization, and Max pooling. The second Conv2D layer has 64 filters with a 3 × 3 kernel,
and the third one has 256 filters with a 3 × 3 kernel. All Max Pooling layers have the same
2 × 2 kernel size. These convolutional layers extract higher-level features from the input
and increase feature abstraction. A Global Average Pooling (GAP) layer is used instead of
a flattening layer, which significantly reduces the number of parameters and captures more
important features across the entire spatial dimension. The model then passes through a fully
connected layer (Dense) with 128 units that uses the ReLU activation function. A Dropout
layer with a 40% dropout rate is used to prevent overfitting. Finally, a Dense output layer
with a Sigmoid activation function is used for binary object classification.
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Figure 6.3. Proposed 2D-CNN architecture for road detection

The model was trained on a system with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
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and 16 GB of RAM, without GPU acceleration. Given the memory constraints and process-
ing power limitations, training on a larger dataset was not possible during the early phases.
Due to these computational constraints, only a subset of the training dataset, approximately
10,000 patches, was used in the initial training stage of the model. The initial training phase,
configured for 100 trials, took 2 hours and 16 minutes to complete, stopping at trial 91 due to
early stopping mechanism. Once the best-performing model was identified, it was trained on
the entire training dataset and validated on 20% of this dataset, after which it was evaluated
on the test dataset. The total number of model parameters is 201,473 (trainable: 200,769 and
non-trainable: 704). It is compiled with a binary cross-entropy loss function and optimized
using the Adam optimizer.

6.2.4. Evaluation Metrics

Evaluation was performed using classification evaluation measures. For trained CNN model,
a confusion matrix was used to present the absolute and relative number of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) samples. The test
data was classified by the CNN model, and each sample was categorized into one of the
following subsets [286]:

• True Positive (TP): the model correctly predicts the road as present (1), and the actual
measurement confirms this.

• True Negative (TN): the model correctly predicts the road as absent (0), and the actual
measurement confirms this.

• False Positive (FP): the model incorrectly predicts the road as absent (0), while the
actual measurement is present (1).

• False Negative (FN): the model incorrectly predicts the road as present (1), while the
actual measurement is absent (0).

This categorization (TP, TN, FP, FN) is useful for calculating the following metrics to
evaluate tuned CNN model [287]:

• Precision - indicates the proportion of true positives relative to the total number of pos-
itive predictions made by the model (TP + FP). It measures how many of the predicted
positives are actually positive.

Precision =
T P

T P+FP
(6.1)
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• Recall - reflects the proportion of actual positives that were correctly identified by the
model. It measures how many of the true positives were detected.

Recall =
T P

T P+FN
(6.2)

• F1-Score - the harmonic mean of precision and recall, providing a balanced measure
of both metrics.

F1 = 2∗ Precision∗Recall
Precision+Recall

(6.3)

• Accuracy - represents the proportion of correctly classified samples (both true posi-
tives and true negatives) relative to the total number of samples.

Accuracy =
T P+T N

T P+T N +FP+FN
(6.4)

• ROC (Receiver Operating Characteristic) Curve - a graphical representation that
shows the trade-off between the true positive rate and the false positive rate across
different threshold settings. It helps visualize the model’s performance at various clas-
sification thresholds.

• Area Under the Curve (AUC) - measures the overall ability of the model to discrimi-
nate between positive and negative classes. It represents the area under the ROC curve,
with a value between 0 and 1. A higher AUC indicates better model performance.

6.2.5. Overview of Common CNN Architectures for Comparison with
2D-CNN

To evaluate the performance of the proposed 2D CNN architecture, it will be compared with
well-known CNNs, namely: DeepLab v3, ResNet-50 and U-Net.

DeepLabV3 architecture has a typical encoder-decoder structure. The encoder part of
the network innovatively integrates the deep separable convolution Xception as the back-
bone network to extract the initial feature information of the image. It then employs the
Atrous Spatial Pyramid Pooling (ASPP) module, replacing the general basic network, to ex-
pand the receptive field through continuous downsampling operations. The ASPP module
achieves a wider field of view without compromising image resolution or performing ad-
ditional calculations. This module uses global average pooling, 1 x 1 convolution, and the
dilation rate (expressed as rate) of the combination of atrous convolutions of 6, 12, and 18
to encode image context information. The multi-scale feature maps are then concatenated
and merged in the channel dimension, the number of output channels is adjusted to 256, and
channel compression is achieved using 1 x 1 convolution. At this point, the resolution of
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the feature map is 1/16 of the original image. The decoder uses bilinear interpolation to up-
sample the feature tensor output by the encoding stage four times and then associates it with
the feature map of the corresponding layer in Xception. It uses skip connections to capture
detailed information from shallow features to enrich the semantics and details of the image.
After performing two 3 × 3 convolutions to refine the features, the feature map size is grad-
ually restored to the original image size using the four-fold upsampling method of bilinear
interpolation. This approach helps to reduce the loss of feature information caused by exces-
sive sampling steps [288]. DeepLabV3 was originally developed for semantic segmentation,
but in this work it is adapted to handle binary classification tasks.

ResNet-50 or a deep residual network with 50 layers (48 convolutional layers, 1 max-
pooling layer and 1 fully connected layer) was introduced by Microsoft researchers in
2015 [289]. Deep neural networks usually face the problem of vanishing gradient, which
is responsible for poor network performance as the networks get deeper, especially architec-
tures with more than 20 to 30 layers. To avoid this, the deep residual network uses Residual
Blocks, which are the core units of ResNet, allowing the gradient to bypass some layers
and provide smoother training even with increased depth. ResNet-50 has proven to be very
effective in image classification, object detection and segmentation. Moreover, it achieved
strong performance on the ImageNet dataset. Also, it uses a bottleneck architecture (1 x
1, 3 x 3, 1 x 1 convolutions) designed specifically for image recognition to reduce com-
putational costs while maintaining performance. After each convolutional layer and batch
normalization layer, the ReLU function is applied to ensure that only positive values pass
through [290].

U-Net is a convolutional neural network architecture originally designed for segmenta-
tion of biomedical images, but for purpose of this work it is modified to do a binary clas-
sification. The network has 23 convolutional layers and is composed of two main parts: a
contraction path (encoder) and an expansion path (decoder). The structure of architecture is
U-shaped, hence the name. Encoder is built up of repeated convolution blocks, where each
block contains two 3 x 3 convolution layers followed by a ReLU activation function. After
each block, a 2 x 2 max pooling operation with stride of two is applied for downsampling,
which also doubles the number of feature maps. The decoder is an inverted version of the
encoder, built from repeated applications of upsampling the feature map followed by a 2 x 2
convolution that halves the number of feature maps after each block. Feature maps from the
encoder are concatenated with corresponding cropped feature maps from the decoder. This
is followed by two 3 x 3 convolution layers, each with a ReLU activation function. In the
final layer, a 1 x 1 convolution is used to map the feature vector to the desired number of
classes. At the end, the output segmentation map contains only the pixels for which the full
context is available in the input image [291].
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6.3. Results

In this section, the results of the proposed 2D-CNN model for road detection in Sentinel-2
image patches are presented. To evaluate the performance of the model, it is compared with
well-known CNN architectures: DeepLabV3, ResNet-50 and U-Net. The performance of all
models is evaluated using the following metrics: Accuracy, Precision, Recall and F1-Score.
The comparison is performed on both the training and test datasets, providing insights into
the strengths and limitations of each model for road detection in Sentinel-2 imagery.

6.3.1. 2D–CNN Model Performance

To evaluate the performance of the 2D CNN model for road detection in Sentinel-2 imagery
patches, 50 training epochs were used. Figure 6.4 shows the accuracy (left plot) and loss
(right plot) curves of the model for the training and validation sets. It can be seen from the
accuracy curve that the training accuracy shows a stable increase, starting at around 75% and
reaching over 93% at the 50th epoch. This indicates that the model is gradually increasing its
accuracy and ability to classify road patches in the training set. On the other hand, validation
accuracy is more volatile compared to training, but it has also upward trend. The validation
accuracy was around 65% at the beginning and fluctuated between 80% and 90% during
most of the training period.

The loss curves help to gain insight into the learning process of the model and to deter-
mine whether the model converges or overfits for a batch of examples. The graph shows that
the loss curve of the training data has a rapidly decreasing loss and looks like a logarith-
mic curve. The loss decreased from about 0.55 to less than 0.30 in the first 20 epochs and
slowly decreased until the 50 th epoch, when the loss was about 0.25. The validation loss
curve is more variable, but shows an overall decreasing trend, starting at around 0.70 and
ending at around 0.33. The fluctuations in validation losses, especially the peaks observed
around epochs 5, 40 and 45 indicate periods in which the model was unable to achieve good
generalization to the validation set.

In order to gain insight into the performance of the 2D-CNN model, an accuracy as-
sessment was made for the training and test datasets. Figure 6.5 presents the results of the
metrics described in Section 6.2.4 for the training dataset. The model showed high perfor-
mance across all metrics. The confusion matrix shows a similar ratio of correctly classified
patches with no road (323,446) and patches representing a road (315,496). Also, the number
of misclassified patches for both classes is less than 25,000, or 8% for each class. Due to
the large number of correctly classified true positives (TP) and true negatives (TN), it is not
surprising that the model showed a balanced performance in terms of the precision metric,
namely 0.93 for "no-road" patches and 0.95 for road patches. The recall metric is similarly
balanced and shows 0.95 for "no-road" patches and 0.93 for "road" patches. Therefore, the
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Figure 6.4. Loss and accuracy curves for the training and validation datasets over epochs
for the 2D-CNN model used for road detection

model indicates good qualitative (high precision) and quantitative (high recall) performance
on the training set. The overall accuracy of the model on the training set was 0.94, while the
F1-Score, which is primarily designed for binary classification, also achieved a high score of
0.94 for both classes. The ROC curve with an AUC of 0.99 shows that the model is capable
of distinguishing the classes at different threshold settings. Similarly, the Precision-Recall
curve shows a high AUC value of 0.99 suggesting that the model returns accurate results.

Figure 6.5. 2D-CNN model evaluation for road detection on train dataset

Figure 6.6 shows the performance of the 2D-CNN model on the test dataset. It can be
observed that the model maintains a robust performance, albeit with a slight drop compared
to the training set. The confusion matrix shows a similar number of correctly predicted
patches, namely 78,760 for the "no-road" class and 75,891 for the "road" class. The number
of incorrectly predicted patches is about 10% for the "road" class predicted as "no-road"
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class and less than 10% for the "no-road" class predicted as "road" class. Therefore, the
precision of the model was 0.92 for predicting the road class and 0.90 for the no-road class.
For recall, the model scored 0.89 for the "road" class and 0.93 for the "no-road" class. The
recall of less than 90% for the "road" class is to be expected given the increase in the number
of incorrectly predicted patches in the "road" class as "no-road" class. The overall accuracy
and F1-Score for both classes were 0.91. The ROC curve with an AUC value of 0.97 shows
the strong discriminative power of the proposed 2D-CNN model. The Precision-Recall curve
also shows high performance with an AUC value of 0.97, indicating that the model maintains
good precision across different recall levels.

Figure 6.6. 2D-CNN model evaluation for road detection on test dataset

The slight difference in the performance metrics from the training to the test dataset is
expected and is not significant given to the number of sample patches. The model generalizes
well to unseen data and shows balanced performance for both classes, suggesting that the
model is equally effective in identifying "road" and "no-road" patches in Sentinel-2 imagery.
Overall, the model’s robust performance on both the training and test datasets makes it a
reliable tool for road detection in remote sensing applications.

6.3.2. Comparison with DeepLabv3, ResNet-50 and U-Net

To find out how well the 2D-CNN model performs, it was compared with the basic CNN
architectures DeepLabV3, ResNet-50 and U-Net in both the training and test datasets. Since
these architectures are primarily designed for image segmentation, they were adapted for bi-
nary classification by modifying their output layers to include a Sigmoid activation function.
The models’ performance is assessed using accuracy, F1-Score, precision, and recall metrics.
Table 6.1 represents the results over the training dataset whereas Table 6.2 reflects the results
over the test dataset.
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Based on the results of the tables, one can deduce that the proposed 2D-CNN model
presents the best performance by showing the higher results in terms of accuracy, F1-Score,
precision, and recall of both the training and testing datasets. As discussed in the previous
section, the model generalizes well and stays robust even on unseen data. Additionally, the
ROC-AUC and precision-recall curves suggest good discriminative power between classes.
However, the model has a small weakness; this was noticed by looking at the little differ-
ence between recall values in train and test datasets, which signifies that there are partial
misclassifications of road patches in the test dataset.

Model Accuracy F1-Score Precision Recall
2D-CNN 0.9389 0.9382 0.9497 0.9271
DeepLabV3 0.5861 0.3471 0.8223 0.2200
ResNet-50 0.6187 0.4654 0.7789 0.3319
U-Net 0.6841 0.6689 0.7030 0.6380

Table 6.1. Comparison of models on the train dataset

Model Accuracy F1-Score Precision Recall
2D-CNN 0.9091 0.9075 0.9225 0.8930
DeepLabV3 0.5857 0.3450 0.8207 0.2184
ResNet-50 0.6167 0.4618 0.7732 0.3292
U-Net 0.6820 0.6663 0.7001 0.6356

Table 6.2. Comparison of models on the test dataset

DeepLabV3 model works effectively in terms of precision, especially on the training
dataset where the precision is above 0.82. This means that the model correctly reproduces
the road patches during classification. However, other metrics such as accuracy, F1-Score
and recall show low values, especially on the test dataset where the recall is 0.218 and the
F1-Score is 0.345. The low recall value means that DeepLabV3 does not detect a large pro-
portion of true positives and therefore does not effectively detect a large number of patches
of the "road" class.

The ResNet-50 architecture has a similar precision score on both train and test datasets,
hence, it is consistent in detecting "road" patches across different datasets achieving around
0.77 to 0.78 score. However, despite outperforming DeepLabV3 in terms of F1-Score and
general performance, it still shows mediocre results overall. The relatively low recall score
around 0.32 means that this model cannot recognize many patches related to the "road" class.
The F1-Score of ResNet-50 is higher compared to DeepLabV3, but it is still less than 0.5,
which means generally poor performance.

The performance of the U-Net architecture is well-balanced, with an accuracy of 0.6841
on the training dataset, and 0.6820 on the test dataset. Precision, F1-Score, and recall are
relatively stable in all the datasets, with precision 0.7001 and recall 0.6356 in the test dataset.
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These reflect that U-Net has a better generalization capability than DeepLabV3 and ResNet-
50, but it does not compete with the 2D-CNN; even though it demonstrates a more stable
performance across different metrics.

6.4. Discussion

This section describes the performance, limitations, and applicability of the proposed 2D-
CNN model. It discussed the most important features related to accuracy, regional applica-
bility, and long-term monitoring, providing insights for future research.

6.4.1. Accuracy of the 2D–CNN Model

It can be seen that the accuracy of the 2D-CNN model is very high for both the train and test
datasets. The overall accuracy in the training dataset is 93.89%, in the test dataset 90.91%,
which allows a very good distinction between "road" and "no-roads" patches in Sentinel-2
imagery. This slight decrease of about 3% between the train and test datasets indicates a
good generalization to unseen data without significant overfitting. These results show that
the 2D-CNN network has learned the detection of roads in Sentinel-2 images quite well. The
final test accuracy of 91% supports its strong performance on unseen data. However, the
persistent discrepancy between train and test metrics as well as the fluctuations in validation
performance suggest that the model could still be optimized in terms of its generalization
capabilities. This aspect is very important when it comes to real-world applications where the
model is expected to reliably recognize road features on unseen satellite imagery. Compared
to the baseline models, such as DeepLabV3, ResNet-50 and U-Net, the proposed 2D-CNN
outperformed them in terms of accuracy for both datasets. In addition, the proposed 2D-
CNN outperformed the basic models in other metrics as well, such as F1-Score, precision
and recall.

6.4.2. Limitations

Despite these promising results, some limitations of the 2D-CNN model have to be consid-
ered. First, the Sentinel-2 imagery resolution (10 m) limits the capability of the model to
recognize narrow roads or fine details. Thus, it could fail in identifying the smaller road
structures. The present model considers only "road" and "no-road" classes. This simplifi-
cation might turn out to be not enough in complex urban landscapes, since it may lead to
some misclassifications of similar features, such as parking lots or large pedestrian areas.
Furthermore, the types of roads, like highways, local roads, and even unpaved roads, are not
segregated, which again restricts the effectiveness of carrying out a detailed analysis with this
transport network. Degradation in model accuracy may be observed with poor image qual-
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ity due to sensor problems or atmospheric interference like cloud cover or seasonal changes
affecting the image quality. Despite all efforts to prevent this, there is always a certain risk
of overfitting to the specific characteristics of the training dataset.

6.4.3. Applicability to Other Regions

The 2D-CNN model was trained on a specific geographical area which covers different types
of roads, from motorways to the pedestrian pathways. While this variety offers robustness in
detecting different road types, landscapes and road structures can differ significantly across
regions and affect model’s ability in making accurate predictions. To see how well the model
performs in different regions and landscapes, it should be tested, which is possible due to
the global availability of Sentinel-2 imagery. In addition, different countries have different
standards for urban construction, which may also affect the model’s performance in detecting
roads. However, this should be considered and explored as part of future work.

6.4.4. Future Implications for Long-term Monitoring

The developed 2D-CNN model shows the potential for long-term monitoring of road net-
works by using Sentinel-2 imagery. Thus, in the future, it may be possible to use this model
to track changes in the road network over time, which would be useful in urban development
studies and infrastructure monitoring. If the results of the model are integrated with other
geospatial data such as population density or economic indicators, or with data from other
satellite sensors, it could also provide comprehensive insights into urbanization patterns and
detect roads under different conditions. Moreover, the model could be used to regularly
update road maps, which could lead to more accurate geographic information systems.

6.5. Conclusion

The 2D-CNN model performed very well in predicting the presence of roads within Sentinel-
2 remote sensing imagery, achieving a classification accuracy of 91%, despite the low spatial
resolution of the Sentinel-2 bands, which were resampled to 10 m for a uniform dataset. This
success highlights the model’s capability to effectively detect spatial relationships, accurately
distinguishing between "road" and "no-road" patches.

Notably, this relatively simple 2D-CNN architecture outperformed more complex models
such as DeepLabV3, ResNet-50, and U-Net. This finding emphasizes the importance of
selecting an appropriate model architecture tailored to the specific task, often more critical
than relying on advanced but potentially less suitable models.

Furthermore, while the 2D-CNN model is designed to classify image patches as either
containing roads or not, its performance can serve as a valuable preliminary step for more
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detailed road segmentation. By first filtering out patches without roads, the model can fo-
cus subsequent segmentation efforts on patches where roads are present, thus optimizing
resource allocation and improving the efficiency of the segmentation process. This approach
can reduce computational overhead and enhance the precision of detailed segmentation mod-
els applied to road patches.

The model’s success aligns with the core objective of demonstrating the practical appli-
cation of CNN architectures in remote sensing tasks. It underscores the potential of deep
learning as a powerful tool for geographic information systems (GIS) and spatial analysis.
The 2D-CNN’s balance of metrics precision, recall and generalization makes it a valuable
approach for addressing spatially related problems in remote sensing.

While these results are promising, they are exploratory in nature. Further research is
likely to refine these findings and expand their applicability to diverse global landscapes and
infrastructures.
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This chapter describes an approach that combines advanced deep learning techniques and
multispectral remote sensing data to predict fire propagation potential (FPP) [292]. This
task represents pixel classification problem in remote sensing. A 3D convolutional neu-
ral network (3D-CNN) is proposed as a deep learning method that can successfully predict
FPP based on Sentinel-2 satellite images. This chapter describes the implementation and
characteristics of the 3D-CNN, as well as a comparison with other deep learning models.
Successful prediction of FPP could aid in monitoring and prevention measures that are part
of effective forest fire management.

The structure of the chapter is organized as follows. In the Introduction, an overview of
the literature on the potential of fire propagation and existing tools that were developed for
this purpose is given. Also, an overview of previous works that used machine learning meth-
ods, as well as works that used deep learning methods and applied them to remote sensing
data was described. The Materials and Methods section describes the research area, the con-
struction and preprocessing of the data set used, and the architecture of the 3D-CNN model,
as well as the 1D-CNN and 2D-CNN models that were used for comparison. The Results
section presents the performance metrics of the 3D-CNN model and compares it to the 1D-
CNN and 2D-CNN models, including a qualitative evaluation of the FPP prediction maps.
The Discussion discussed the accuracy of the proposed 3D-CNN model, its limitations, and
directions for future research. The chapter ends with a conclusion on the implications of this
work on forest fire management and risk reduction.

7.1. Introduction

Forest fires pose a major threat to many ecosystems. They can cause great damage to forests
and soil, and pose a threat to human lives. During the last few decades, it has been shown that
forest fire seasons have become longer and more intense, especially in the summer months.
Some of the causes of this are global warming, rapid industrialization and human activities
that can be accidental, negligent or intentional [293]. In addition to the fact that forest fires
destroy vegetation, during their activity significant amounts of greenhouse gases are released,
which contribute to climate change. Based on the above, there is a need for actions that could
lead to the implementation of accurate and reliable models for the purpose of preventing or
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predicting fires.
Fire propagation models that use fire spread simulators such as FlamMap, Farsite and

Wildfire Analyst or machine learning techniques play a significant role in the prediction of
forest fires behavior. The mentioned models simulate the spread of fire and estimate the
burned area based on the observed environmental factors. In this way, important insights es-
sential for designing effective fire prevention and management strategies are obtained [294].

Fire risk comprises fire danger, exposure and vulnerability [295]. Given the scale of
the problem, countries worldwide have dedicated substantial resources to fire suppression,
prevention, and post-fire recovery, which often has an economic impact in terms of cost
[296]. Fire risk assessment includes estimating the probability of a dangerous fire event,
but not all ignitions cause danger. If a fire does not spread, it is not considered dangerous.
However, once a wildfire has spread, it is very difficult to control and extinguish [297]. Fire
propagation potential is quantitative measure used for distinguishing those two situations.

Traditional techniques often rely on physical, qualitative and statistical analysis to un-
derstand and predict wildfires and often fail to accurately capture the intricate and nonlinear
nature of fire dynamics [298]. The aforementioned traditional techniques attempt to simplify
the complex interactions between different factors in the environment, leading to limited
predictive power. The emergence of various machine learning (ML) algorithms has greatly
changed the way of spatial prediction of forest fire susceptibility compared to traditional
methods. Machine learning has enabled researchers to analyze large data sets and discover
hidden patterns within them that may indicate fire danger [299]. Examples of ML algorithms
that have been successfully used to generate wildfire susceptibility maps are artificial neu-
ral networks (ANNs), random forests (RF) and support vector machines (SVMs) [300–302].
These algorithms capture complex relationships and interactions between input variables,
such as topography, vegetation types, and weather conditions, which provides more reli-
able results in fire-prone areas. Also, an increasing number of studies provide a compar-
ison of the performance of different ML algorithms in predicting forest fires susceptibil-
ity [292, 303, 304]. In this way, they provide an insight into the strengths and weaknesses of
ML algorithms in different contexts, and emphasize the importance of choosing the most ap-
propriate algorithm based on the characteristics of the studied research area and the available
data.

However, despite their advantages, many of these ML models are limited by their shal-
low pixel-based architectures, which cannot fully exploit the spatial patterns present in the
data. This limitation emphasizes the need for more advanced approaches such as convo-
lutional neural networks that can extract and exploit representative features from the input
data. Recent studies have shown that deep learning is making significant progress com-
pared to traditional ML methods. In [305], the authors introduced a CNN to predict fire
susceptibility in the Chinese province of Yunnan and achieved an accuracy of 82% in their
validation set. In continuation of this work, the same authors compared different CNN and
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multilayer perceptron (MLP) architectures globally [306], analyzing fire susceptibility across
seasons, and found that a CNN with two convolutional layers and three fully connected lay-
ers achieved extremely high AUC score (0.956 - 0.982). Complementing these studies, the
authors in [307] implemented a deep neural network with three hidden layers and achieved
an AUC of 0.894. In [308], an ensemble model combining two deep learning networks for
forest fire susceptibility in two regions in Chile is proposed and achieves an AUC of 0.953.

This chapter presents a 3D-CNN model implemented for the purpose of predicting fire
propagation potential using remote sensing data. In addition to remote sensing data, data
on past fires and short interventions by firefighters are used. Data on past fires represent a
high fire risk labeled as FPP=1, while data on short interventions by firefighters serve as a
reference for non-spreading fires labeled as FPP=0. In order to evaluate the proposed model,
1D and 2D convolutional neural networks were implemented to compare with the proposed
3D-CNN model.

7.2. Materials and Methods

7.2.1. Study Area

Figure 7.1 shows study area located in the Republic of Croatia, specifically within the Split-
Dalmatia County. Some data points geographically belong to the Šibenik-Knin County due
to the proximity to the county border between these two counties. All data were collected
for the period from 2017 to 2021.

Firefighter Interventions Database (in Croatian "Upravljanje Vatrogasnim Intervencijama
- UVI") is official database of records of every intervention in Croatia and includes infor-
mation about location and resources used in intervention. In the scope of this reasearch,
interventions that lasted less than 2 hours and less than 3 firefighters were engaged were
considered situations with low propagation potential. Those records in the Split-Dalmatia
County are represented as point data, marked in yellow on the map depicting the study area.
These points indicate the location of fires but not their size, since they did not spread signifi-
cantly. In contrast, data extracted from the European Forest Fire Information System (EFFIS)
database include both fire occurrences and their sizes. These are displayed on the map as
polygons, with the size of each polygon corresponding to the scale of the fire event. EFFIS
provides support to services responsible for forest fire protection in the European Union (EU)
and neighboring countries, while also offering updated and reliable information on wildfires
in Europe to the European Commission services and the European Parliament [309].

This research area was selected due to its sensitivity to forest fires and based on long-term
monitoring of the frequency of forest fires in the area, which are triggered by a combination
of climatic conditions, vegetation type and human activities.

109



Chapter 7: EVALUATION OF 3D–CNN MODEL

Figure 7.1. Study area in Split-Dalmatia County, Croatia. Points represent small fire
locations, while polygons represent larger fires from EFFIS database (shown in Plate

Carrée projection)

7.2.2. Dataset Construction and Preprocessing

In order to train and implement a reliable model for detecting fire propagation potential, a
spatial dataset consisting of Sentinel-2 satellite imagery, fire data from the European Forest
Fire Information System (EFFIS), and incident points from smaller fires handled by firefight-
ers was used.

The Sentinel-2A/B images were retrieved from the Copernicus Data Space Ecosystem
via the S3 API for the period from 2017 to 2021. This data is open access (Copernicus
Sentinel data [2017-2021] [284]) and was provided in .jp2 format at Level-2, meaning the
images were atmospherically corrected and resampled to a uniform spatial resolution of 60
meters for all bands (B01-B07, B8A, B09, B11, and B12).

Fire intervention points represent incidents where fires lasted less than two hours and
required no more than two firefighters. These points are considered to have a low potential
of fire propagation and are labeled as FPP = 0. In contrast, data from EFFIS, which covers
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larger-scale fire events, is considered to represent propagated fires and is labeled as FPP = 1.
For each EFFIS fire polygon, data cubes were constructed by dividing the polygons into

1km x 1km patches and associating them with corresponding Sentinel-2 band data. Sim-
ilarly, for each fire intervention point, a 1km x 1km buffer zone was created around the
location, and all relevant Sentinel-2 bands patches were extracted for analysis. On the final
dataset downsampling was performed to achieve balanced dataset with similar number of
representatives of each class.

A total of 880 data cubes were generated for the study, with 453 cubes corresponding
to fire intervention points and 427 cubes representing EFFIS fire polygons. Each data cube
has a shape of (17, 17, 11), where the first two dimensions (17x17) represent a 1km x 1km
patch (17 pixels, each 60 meters across), and the last dimension (11) stands for the number
of spectral bands. To ensure consistent feature scaling and improve the stability of the model
during training, the dataset was normalized using MinMaxScaler, which scales the data to a
range of 0 to 1. This process of generating data cubes and downloading the corresponding
Sentinel-2 imagery was fully automated using Python scripts, which ensured consistent and
efficient data handling. Sentinel-2 images were carefully selected to capture the environ-
mental conditions as close as possible to the time of each fire incident, while ensuring they
preceded the fire event. For both EFFIS data and intervention reports, images were consis-
tently chosen from within a 4-day window before each fire occurrence. Figure 7.2 depicts
a box plot for the EFFIS and interventions datasets, showing that the majority of selected
images fell within 1 to 2 days before the fire events, with median time differences ranging
from 1 to 2 days across all years for both datasets. This narrow temporal window ensures
that the satellite data closely represents the pre-fire conditions, providing a robust foundation
for modeling fire propagation potential. The consistent approach across years (2017-2021)
and between the two fire datasets (EFFIS and interventions) allows for a standardized and
comparable analysis of environmental factors contributing to fire risk.

7.2.3. Model Implementations

In this section, the architectures of 1D-CNN, 2D-CNN and 3D-CNN models are described.
The same architecture was used for each model, which is adjusted during hyperparameter
tuning. For this purpose, Keras Tuner with the RandomSearch function was used, which in
100 attempts for each individual model managed to adjust the architecture with the number
of layers, filters and other parameters in order to obtain the optimal performance for each
CNN. In this way, a fair comparison of the models was ensured, as their initial structures
were identical.
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Figure 7.2. Time differences between fire incidents and corresponding Sentinel-2 images
(2017-2021). Left: EFFIS data; Right: Intervention data. Negative values indicate that

images were taken before fire events.

1D–CNN

Figure 7.3 shows a sequential 1D-CNN model representing the best architecture found by
hyperparameter tuning. The model is fitted to Sentinel-2 satellite image data and takes as
input a one-dimensional array of 11 spectral values for one pixel related to the bands of the
Sentinel-2 satellite. Thus, the shape of the train data in an input layer is (11,1).

The proposed architecture includes three 1D convolutional layers (Conv1D), each fol-
lowed by a Max Pooling layer with pool size 2 and stride 2 for spatial dimensionality reduc-
tion to extract important features. In addition, all Conv1D layers have a kernel size of 3 and
ReLU activation functions, but differ in the number of filters: the first and last layers have
128 filters, while the second layer has 64 filters. The output of the last Max Pooling layer
is flattened to produce a 1D feature vector, followed by a dense layer with 256 units and the
ReLU activation function. To prevent overfitting, a dropout with a rate of 0.3 is applied. The
architecture ends with the dense output layer with one unit (binary classification) with the
Sigmoid activation function.

The model was compiled using binary cross-entropy as the loss function and optimized
using the Adam algorithm. The architecture comprises a total of 83,137 trainable parameters,
with no non-trainable parameters. This proposed 1D-CNN model is designed to capture the
spectral relationships in the Sentinel-2 data at the pixel level, enabling effective prediction
of fire propagation potential.

2D–CNN

Figure 7.4 depicts a sequential 2D-CNN model, representing the optimal architecture iden-
tified through hyperparameter tuning for fire propagation potential prediction. The model
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Figure 7.3. Proposed 1D-CNN architecture for Fire Propagation Potential

was developed to process data from Sentinel-2 satellite imagery and analyze spatial features
across the two-dimensional patches of spectral data. Each sample fed into the network is a
two-dimensional array (17x17 pixels) extracted from a single spectral band, representing the
spatial distribution of that band’s spectral values. This results in an input shape of (17, 17,
1), where the last dimension indicates that each patch contains data from one spectral band,
preserving both the spatial characteristics and spectral information of that specific band.

The architecture includes two 2D convolutional layers (Conv2D). The first layer uses 32
filters, kernel size 3 × 3, and maintains spatial dimensions of 17 × 17 × 32, while the second
layer also uses 32 filters but with kernel size 5 × 5 and maintains spatial dimensions of 8 × 8 ×
32. Both of these layers use ReLU activation functions. Each convolutional layer is followed
by a Max Pooling layer using pool size 2 and stride 2 to reduce the spatial dimensions and
extract key features. This first Max Pooling layer reduces dimensions from 17 × 17 × 32
to 8 × 8 × 32, while the second one is reducing the dimensions from 8 × 8 × 32 to 4 ×
4 × 32. The output from the final Max Pooling layer is flattened to generate a 1D feature
vector of 512 units. Following the flattening operation, the first dense layer comprises 256
units with a ReLU activation function. This is succeeded by a dropout layer with a rate of
0.2 to mitigate overfitting. The output dense layer consists of a single unit with a Sigmoid
activation function, facilitating binary classification of fire propagation potential.

For this architecture the binary cross-entropy serves as the loss function, while opti-
mization is performed by using the Adam algorithm. The architecture summarizes 157,537
trainable parameters, hence, all of them are active during learning.
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Figure 7.4. Proposed 2D-CNN architecture for Fire Propagation Potential

3D–CNN

Figure 7.5 illustrates the optimized 3D-CNN architecture developed through hyperparameter
tuning for fire propagation potential prediction. This model is designed to learn and process
spatial-spectral relationships in three-dimensional data cubes derived from Sentinel-2 satel-
lite imagery. Each input sample having dimensions of 17 x 17 x 11 x 1, representing spatial
and spectral information.

The architecture consists of three 3D convolutional layers (Conv3D). The first layer con-
sists of 64 filters with a kernel size of 5 x 5 x 5; thus, the size of the input remains spatial and
spectral dimensions of 17 x 17 x 11 x 64. The second layer contains 32 filters with a kernel
size of 5 x 5 x 5, resulting in a dimension of 8 x 8 x 5 x 32. The last convolution layer applies
a kernel size of 3 x 3 x 3 by using 96 filters and generates 4 x 4 x 2 x 96 data cubes. All
Conv3D are followed by ReLU for activation. After every convolutional layer, there is a 3D
Max Pooling layer to reduce the spatial dimensions with a pool size of 2 x 2 x 2 and stride 2
x 2 x 2. The first Max Pooling layer reduces dimensions to 8 x 8 x 5 x 64, the second further
reduces to 4 x 4 x 2 x 32, and the last performs a final reduction to 2 x 2 x 1 x 96. The output
from the final Max Pooling layer is flattened to create a one-dimensional feature vector of
384 units. This is followed by a Dense layer with 192 units and ReLU activation function.
To mitigate overfitting, a dropout layer with a rate of 0.2 is implemented. The output layer is
a Dense layer with one unit and Sigmoid activation function, facilitating binary classification
of fire propagation potential.

In the proposed 3D-CNN architecture, as in the two previously described architectures,
the binary cross-entropy was used as the loss function and the Adam algorithm was used for
its optimization. The total number of trainable parameters is 421,249, with no non-trainable
parameters.
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Figure 7.5. Proposed 3D-CNN architecture for Fire Propagation Potential

7.3. Results

This section describes the results of the proposed 3D-CNN model for predicting fire propaga-
tion potential based on Sentinel-2 imagery. The proposed model is compared with 1D-CNN
and 2D-CNN models whose principle is described in Section 3.5. Accuracy, Precision, Re-
call and F1-score metrics, confusion matrix, ROC curve and Precision-Recall curve were
used to evaluate the mentioned models. The definitions of used metrics can be found in Sec-
tion 6.2.4. The comparison was made on the train and test datasets, and provides an insight
into the advantages and limitations of each model. All models are trained and tested on a
system with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 16 GB of RAM, without
GPU acceleration. Each model completed all 100 trials despite implemented early stopping
with patience of 5. The training times varied significantly: 1D-CNN required 51.5 hours,
2D-CNN took 2.3 hours, and 3D-CNN needed 16.4 hours to complete the training process.

7.3.1. 3D–CNN Model Performance

The 3D-CNN model was trained over 50 epochs to predict fire propagation potential using
Sentinel-2 satellite imagery. As illustrated in Figure 7.6, the model’s performance was eval-
uated by examining accuracy (left plot) and loss (right plot) curves for both the training and
validation datasets.

The accuracy curve on the training set (blue line) shows an increase in accuracy through
the epochs where it reaches high values of 97-98% by the end of the training period. Based
on the curve increasing trend, it can be noticed that the model effectively recognizes and
learns patterns from the training data and thus minimizes errors during the epochs. On the
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other hand, the accuracy curve on the validation set (orange line) shows some degree of
accuracy fluctuation across epochs, especially in the early epochs, with values oscillating
between 85% and 96%. This suggests that the model exhibits some instability in terms
of performance and generalization. Despite the above, the validation accuracy, although
variable, achieves values close to the training accuracy, which suggests that the model can
accurately classify FPP on the validation set under certain conditions.

The loss curve on the training data set (blue line) decreases consistently across all epochs.
The model reaches low loss values close to 0.05 during training, which indicates effective
error minimization during training. However, the loss curve for the validation dataset (orange
line) is irregular and fluctuates frequently, similar to the accuracy curve. This is particularly
noticeable in the first epochs. Although, over time the validation loss decreases approaching
the training loss values.

Figure 7.6. Loss and accuracy curves for the training and validation datasets over epochs
for the 3D-CNN model used for fire propagation potential

Figure 7.7 shows that the 3D CNN model performs strongly on the training dataset.
The confusion matrix shows the high accuracy of the model. The model predicted 348 true
negative and 335 true positive satellite image patches, with only 18 false positive and 3
false negative patches. This indicates a strong classification performance during training.
The ROC curve shows excellent discrimination ability with an AUC of 0.99. The curve
rises steeply and quickly approaches the upper left corner, indicating a large number of true
positive rates and a small number of false positive rates at different thresholds. The precision-
recall curve also shows strong performance with an AUC of 0.98. The curve maintains high
precision values over a wide range of recall values, indicating that the model successfully
balances precision and recall. The effectiveness of the model is supported by the high values
of the precision, recall and F1-Score metrics, which achieve results of 0.95 or more in both
classes. The overall accuracy of model is 0.97. The described metric results show that the
3D-CNN model has a successful and balanced performance on the training dataset, thereby
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learning to effectively distinguish between areas with and without fire propagation potential.

Figure 7.7. 3D-CNN model evaluation for fire propagation potential prediction on train
dataset

The 3D-CNN model also shows strong performance on the test dataset as can be seen in
Figure 7.8. The confusion matrix shows high accuracy, where the model predicted 84 true
negative, 85 true positive, 3 false positive and 4 false negative satellite image patches. The
low number of false positive and negative patches indicates that the model generalizes well
to unseen data. The ROC curve shows an AUC of 0.97 indicating the excellent ability of the
model to distinguish between classes, and the ROC curve itself rises sharply and maintains a
high positive rate over various false positive rate thresholds. The ROC curve is located near
the upper left corner, which indicates excellent model performance. Also, the Precision-
Recall curve shows robust performance with an AUC of 0.94, and high precision over a wide
range of recall values.

7.3.2. Comparison with 1D–CNN and 2D–CNN Models

In order to evaluate the effectiveness of the proposed 3D-CNN model architecture in predict-
ing fire propagation potential from Sentinel-2 images, it was compared with the 1D-CNN
and 2D-CNN models. Each of the mentioned models processes the input data in a different
way, capturing the spatial and spectral information present in the satellite images. The mod-
els were trained and tested on the same datasets, and their performance was compared using
the following metrics: accuracy, F1-Score, precision and recall. Tables 7.1 and 7.2 present
the results for the specified models for the train and test datasets.
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Figure 7.8. 3D-CNN model evaluation for fire propagation potential prediction on test
dataset

Model Accuracy F1-Score Precision Recall
1D-CNN 0.9140 0.9157 0.8934 0.9392
2D-CNN 0.9531 0.9523 0.9313 0.9742
3D-CNN 0.9702 0.9696 0.9490 0.9911

Table 7.1. CNN model comparison for FPP prediction on training dataset

Model Accuracy F1-Score Precision Recall
1D-CNN 0.9101 0.9124 0.8893 0.9368
2D-CNN 0.9112 0.9127 0.9072 0.9183
3D-CNN 0.9602 0.9382 0.9605 0.9551

Table 7.2. CNN model comparison for FPP prediction on testing dataset

The 1D-CNN model receives a one-dimensional array of spectral values of Sentinel-2
satellite images as an input data. Spectral bands represent an array of features characteristic
for each individual pixel of the observed area. The disadvantage of this approach is that
it cannot fully capture the spatial relationships between neighboring pixels. The proposed
1D-CNN model shows consistent performance across both datasets with accuracy and F1-
Score around 0.91. As for the precision, it achieves a relatively lower value compared to
the previous two metrics, i.e. 0.8934 for the train dataset and 0.8893 for the test dataset.
This suggests more false positive predictions of potential fire propagation. Recall achieves a
higher score compared to precision of approximately 0.93 for both datasets suggesting good
sensitivity of the model in detecting areas of potential fire propagation.

The 2D-CNN model treats Sentinel-2 images as a stack of 2D images, where each in-
dividual image represents a spectral band. In this way, the model can capture the spatial
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patterns and textures within each individual band. 2D-CNN shows improved performance
over 1D-CNN in the training dataset where it achieves an accuracy of 0.9531, while for the
testing dataset it achieves similar accuracy to 1D-CNN indicating that its performance de-
grades in the test dataset. The same is for the F1-Score parameter, while in the training data
set it reached a value of 0.9523, in the test data set its value decreases reaching a value of
approximately 0.91 similar to 1D-CNN. Lower values of the metrics in the test dataset in-
dicates a certain degree of overfitting to the training data. On the other hand, the precision
is improved compared to 1D-CNN on both datasets, indicating better precision in positive
predictions. However, recall has a high value on the training set of 0.9742, while on the test
set it drops to 0.9183 again indicating a certain degree of overfitting.

The 3D-CNN model extends the input data considering the spatial and spectral dimen-
sions of the Sentinel-2 data as a 3D volume. The proposed model is successful on both
datasets in all metrics. It achieves the highest accuracy value of 0.9702 for the training
dataset and 0.9602 for the test dataset. It also achieves the highest F1-Score, the highest
precision and the highest recall among all models on both datasets. High precision indi-
cates very few false positives predictions. The high score on the test dataset indicates good
generalization and reliability of the 3D-CNN model in predicting fire propagation potential.

7.3.3. Qualitative Evaluation of FPP Prediction Maps

In addition to the quantitative analysis described in the previous section, a visualization of
the predicted fire propagation potential values was also made. For this purpose, Sentinel-2
satellite images taken on March 8, 2022, were used, and the fire that broke out in the area
of Dugi Rat in Split-Dalmatia County, Croatia, on March 10, 2022, was analyzed. The fire
covered an area of 352 hectares and lasted for approximately two days. The maps were gen-
erated using 1D, 2D, and 3D-CNN models in Python, and the visualization was performed
in QGIS. Since 1 km x 1 km patches were used, for better visualization, the central pixel of
each planned section was taken, after which Inverse Distance Weighted (IDW) interpolation
was performed.

Figure 7.9 shows the fire propagation potential prediction map generated by the 1D-CNN
model. This model correctly predicts high fire propagation potential in the region of the Dugi
Rat fire, marked by the blue polygon, but it can be noted that the map shows a high degree
of fire propagation potential across the whole map. There is little variation in the prediction;
i.e., the FPP is 1 for most areas, which is highlighted in red. It can be concluded that the
model overestimates fire risk and has limited ability to distinguish between different levels
of FPP in the landscape, leading to many false positives.

Figure 7.10 shows the fire propagation potential prediction map generated by the 2D-
CNN model. It can be noted that the mentioned model shows a very low degree of fire
propagation potential on the entire map, which is indicated by a predominantly yellow color.
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Only a few predicted sections indicate areas of high fire propagation potential, marked in
red, but they do not correspond to the actual location of the fires in Dugi Rat. Therefore, the
model underestimates the fire risk, which can lead to many false-negative results.

Figure 7.11 shows the fire propagation potential prediction map generated by the 3D-
CNN model. While the model indicates varying levels of fire propagation potential in the
Dugi Rat fire area (outlined in blue), it shows a mixed pattern of both high (FPP = 1) and
low (FPP = 0) risk predictions within this zone. The distribution of fire propagation potential
across the entire map appears more balanced between the two classes compared to the pre-
vious models. However, the spatial resolution of the predictions (limited by the Sentinel-2
resolution) presents challenges for detailed local-scale risk assessment. The model provides
a broader overview of potential fire risk patterns rather than precise location-specific predic-
tions.

Compared to the generated maps, it can be observed that the 3D-CNN model offers more
balanced predictions, avoiding overestimation of the FPP, which occurs with the 1D-CNN
model, or underestimation of the FPP, as is the case with the 2D-CNN. A likely reason for
the better predictions of 3D-CNN lies in its ability to simultaneously process both spatial
and spectral information from the input data.

Figure 7.9. Fire propagation potential prediction map using 1D-CNN model
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Figure 7.10. Fire propagation potential prediction map using 2D-CNN model

Figure 7.11. Fire propagation potential prediction map using 3D-CNN model
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7.4. Discussion

This section will present a discussion of the proposed 3D-CNN model for the purpose of
predicting fire propagation potential and will compare it with 1D and 2D-CNN models.
Limitations of this approach will also be described and directions given on what could be
changed in future research to achieve a better and more optimal model.

7.4.1. Accuracy of the 3D–CNN Model

The 3D-CNN model achieves an overall accuracy greater than 95% on both datasets, with
minimal deviation between the training and testing datasets. Also, for other metrics, the
model achieves high results above 93% on both data sets. This indicates good generalization,
robustness and stability of the model, which successfully applies the learning from training
to unseen test data. The ability of the 3D-CNN model to process data as a spatio-spectral
volume and find spatial and spectral relationships in it gives it an advantage over 1D and
2D-CNN models.

During a qualitative analysis for a specific fire incident that occurred in Dugi Rat in 2022,
it could be observed that the 3D-CNN model better recognizes more complex spatial patterns
of fire risk compared to 1D-CNN and 2D-CNN, which make extreme predictions of one of
two FPP classes. Although 3D-CNN also shows some degree of overprediction of fire spread
potential as high risk in some parts of the observed area, the nuanced predictions provided
by the 3D-CNN model likely lead to higher accuracy compared to the other two models.

7.4.2. Limitations

Although the 3D-CNN shows promising results in predicting fire propagation potential based
on Sentinel-2 satellite imagery compared to the 1D-CNN and 2D-CNN models, several lim-
itations of this study must be acknowledged. First, the input data are the spectral values of
all Sentinel-2 bands, which may be limited to those that influence fire propagation potential.
In addition, the bands were resampled to a resolution of 60 m using patches of size 17 x 17
as input data, which corresponds to an area of 1 km x 1 km. An area of one square kilo-
meter can be too big for capturing some relevant information about aspects that impact fire
propagation potential.

Moreover, the current model may not adequately capture temporal variations in fire prop-
agation potential, especially since the Sentinel-2 satellite images are available every 5 days.
Finally, it should be considered that the performance of the model may vary when applied to
regions with different environmental characteristics or fire propagation patterns than those
represented in the training data.
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7.4.3. Future Research Directions

In future research, several promising options could be explored to achieve a better model
of fire propagation potential. First is data, where using smaller patches could potentially
capture more factors that influence fire propagation potential. This could be computationally
more challenging, as the number of data would increase, however it could lead to significant
improvements in the accuracy of the 3D-CNN model. A crucial improvement could be made
in the definition of ground truth data, which is currently limited to areas where fires have
actually occurred. This leaves many potentially high-risk areas undefined in the training
data. Future work could incorporate expert assessments or develop standardized evaluation
methods to identify and label high-risk areas that haven’t experienced fires, providing more
comprehensive training data.

In addition to the above, the input data could be expanded by taking into account other
data sources such as weather information (temperature, humidity, wind speed and direction),
radar data for vegetation structure, topographic data or other satellite data (e.g. Landsat,
MODIS). By expanding the data set in this way, the semantics of the input data is enriched
which enables the model to gain a deeper understanding of the complex factors that influence
fire propagation potential.

In addition to data, hybrid models combining CNNs with Recurrent Neural Networks
(RNNs) or using transfer learning could be take into account to further improve model per-
formance. Also, in order to achieve the generalization of the model and its applicability
in the world, it is necessary to conduct studies in different geographical areas. These are
just some suggestions that could improve the proposed 3D-CNN model and thus help in the
strategy to reduce the risk of potential fires.

7.5. Conclusion

This chapter describes the implementation and evaluation of the 3D-CNN model for the
purpose of predicting the fire propagation potential in the Split-Dalmatia County.

Based on the quantitative analysis, the model showed high accuracy and high results in
other metrics such as precision, recall and F1-Score, which suggests successful learning of
the model from the training data. On the other hand, based on the qualitative analysis that
was conducted on the basis of the real fire that happened in Dugi Rat in the Split-Dalmatia
County in March 2022, the model showed a certain degree of excessive adjustment of the
data.

In order to further evaluate the proposed model, it was compared quantitatively and qual-
itatively with 1D-CNN and 2D-CNN models. Compared to the mentioned models, 3D-CNN
showed better performance in both quantitative and qualitative model analysis. The reason
for this may be the limitation of the 1D-CNN model that it only takes into account spectral
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information, and the 2D-CNN model only spatial information, while the 3D-CNN simulta-
neously processes both the spectral and spatial characteristics of satellite images. This is
presented in the qualitative analysis, where the visualization of the predicted data of these
models highlighted their differences. The 1D-CNN and 2D-CNN models had extreme pre-
dictions, that is, one class of FPP was dominant on the map. On the other hand, the 3D-CNN
model provided a more nuanced map.

It should be emphasized that the current version of the proposed 3D-CNN has its lim-
itations, which could be solved in future work. For example, expanding the data set with
weather or topographic data could result in greater accuracy and stability of the model. Also,
work could be done on the geographical diversity of the same data, so that the mentioned
model could be applicable in different geographical regions.

In conclusion, the 3D-CNN model proved to be a good choice for the purpose of predict-
ing fire propagation potential that has the potential to monitor fire-related risks in real-time
that could help fire management agencies.
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8. EVALUATION OF 4D–CNN MODEL

This chapter describes the application of a 4D convolutional neural network for the detection
of burned areas based on data from the Sentinel-2 satellite. This task is a representative
of a scene understanding problem and change detection, since it requires putting an event
in spatio-temporal context. Different patch sizes and their impact on model performance
are compared, with an analysis of the relationship between fire size and the selection of an
appropriate patch size.

The chapter is organized as follows. The introduction provides an overview of existing
methods, from traditional approaches and machine learning to deep learning, which have
been used in the analysis of forest fires. Studies applying convolutional neural networks
to remote sensing data are also presented, with a special focus on 4D-CNN. The Materials
and Methods section presents the research area, description of the data, their processing
and preparation for the model, as well as the implementation of the model itself. This is
followed by a Results section, where quantitative and qualitative analyses are presented. In
the Discussion section, the accuracy of the proposed model is analyzed, its limitations are
identified, and directions for future research are suggested. The chapter concludes with a
summary of findings.

8.1. Introduction

Changes in frequency and extend in wildfires create demand for novel tools capable of rapid
analysis. Accurate and timely detection of burned areas is important when assessing ecosys-
tem recovery and understanding fire spread after a fire has occurred. Remote sensing data
enable biophysical measurements of soil conditions before and after fire. The remote sensing
measurements are often used in fire risk mapping, fuel mapping, active fire detection, burned
area assessment, burn severity assessment and vegetation recovery monitoring [310].

Traditional methods based on statistics have shown effectiveness in prediction, the occur-
rence, and risk assessment of forest fires. Examples of the application of traditional meth-
ods are linear regression for spatial patterns of fire occurrence [301], Poisson regression
for human-caused fires [311] Monte Carlo simulations for fire hazard assessment [312] and
spectral index and thresholding [313–315].

Compared to the mentioned techniques, machine learning techniques have proven to be
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a powerful tool. Methods such as Multilayer Perceptron (MLP) show promising results in
forest fire probability mapping [316, 317]. Also, using algorithms such as Logistic Regres-
sion (LR), Random Forest (RF), and Support Vector Machine (SVM) have improved forest
fire mapping and burning area labeling using satellite data [318–322].

Deep learning has made a breakthrough over the traditional methods and machine learn-
ing techniques primarily due to the efficient processing of time series data such as remote
sensing images. Deep learning techniques are used for various tasks of temporal analysis
of satellite images, such as crop classification, land cover change detection, and urban area
monitoring [323–325]. Also, various deep model architectures have been explored and de-
scribed in the literature, from sequential recurrent encoders that process time sequences to
convolutional neural networks designed for time series analysis [326–328].

In the context of forest fires, these achievements are particularly valuable. Convolutional
neural networks have proven to be effective in processing radar and optical data, such as data
from the Sentinel-1 and Sentinel-2 satellites [329], enabling near-real-time monitoring of fire
progress [330]. Furthermore, burned areas can be precisely mapped through time sequences
of satellite images [331, 332]. Deep learning techniques enable simultaneous processing of
the spectral, spatial and temporal dimensions of satellite imagery, capturing complex patterns
that traditional methods may miss.

1D, 2D, 3D and 4D-CNN models process remote sensing data which are usually spatial,
spectral and temporal. 1D-CNNs process only one dimension, which is usually spectral or
temporal, while 2D-CNNs often process spatial data, consisting of two dimensions - width
and height. 3D-CNN can process multidimensional data but is limited in capturing all rel-
evant information at the same time, because it requires a trade-off between the spectral and
temporal dimensions. On the other hand, 4D-CNN extends the capabilities of 3D-CNN by
adding an additional dimension, allowing the simultaneous processing of spatial, spectral,
and temporal information. Although this method shows significant potential in remote sens-
ing, the number of studies dealing with the application of 4D-CNN in this area is still limited,
which indicates the need for further research.

For example, one study describes implementation of 4D U-Net architecture to land cover
classification based on Landsat-8 satellite data. The proposed 4D U-Net architecture signif-
icantly outperforms lower-order U-Net models (e.g. 2D U-Net, 3D U-Net) and some of the
current state-of-the-art methods (e.g. FCN, FCN + LSTM) [86]. Another study introduces a
4D Fractal CNN for predicting the eutrophication state of water bodies, highlighting the ad-
vantages of the model in processing spatio-temporal characteristics and interactions between
multiple factors [120]. Also, the experimental analysis shows that the 4D-CNN architecture
enables effective modeling of spatial, spectral and temporal features, thereby outperforming
existing 3D and 2D approaches in the classification of land covers based on multispectral
data [89].

In this study, a proposed 4D-CNN architecture is designed for burned area mapping using
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multi-temporal Sentinel-2 imagery. The main motivation for using this type of architecture
is its ability to process four-dimensional data. This makes proposed architecture suitable for
analyzing pre and post fire Sentinel-2 imagery, where changes in spectral signatures across
time and space are key indicators of burned areas. The main research questions defined in
this chapter are:

• RQ1: How accurately can burned areas be detected using 4D-CNN and multi-temporal
Sentinel-2 data?

• RQ2: How does the patch size affect the model’s ability to detect and map burned
areas of different spatial sizes?

8.2. Materials and Methods

8.2.1. Study Area

The study area includes fires that occurred in Split-Dalmatia County, Croatia. Figure 8.1
shows these fires labeled as Site 1, which is related to the fire marked in orange, and Site 2,
which is related to the fires marked in red. Site 1 was used to train the 4D-CNN model, and
that fire event occurred on March 13, 2022. Site 2 was used for additional evaluations, and
those fire events occurred on March 19, 2022. The fire at Site 1 covered an area of 2304 ha,
while the fires at Site 2 were 7 ha, 29 ha, and 68 ha in size.

8.2.2. Dataset Construction and Preprocessing

The datasets were constructed from Sentinel-2 imagery and labeled based on the fire data
obtained from the European Forest Fire Information System (EFFIS) database. Sentinel-2
images were downloaded from the Copernicus Data Space Ecosystem (Copernicus Sentinel
data [2022] [284]), which provides open and free access. Images were downloaded for dates
March 13 and 23, 2022 representing a scene before and after fire event. These scenes were
chosen because there was no cloud coverage and they were the closest dates of occurred fire
event. Dataset was limited only for these scenes because it provides sufficient information for
answering RQs. These are Level-2A images which are atmospherically corrected and with
a spatial resolution of 10 m where bands that were not originally at 10 m resolution were
resampled. All images are downloaded in .jp2 format. Visible bands (B02, B03, B04), near-
infrared (B08), and short-wave infrared (B11 and B12) were used. Visible bands help detect
surface changes and assess vegetation health, which is useful in detecting changes caused by
fires. The near-infrared band helps distinguish healthy from fire-damaged vegetation, while
the short-wave infrared bands help detect thermal anomalies and burned areas. For cooled
soil after a fire, these bands will show low reflectance, while for still-hot areas, the reflectance
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Figure 8.1. Study area representing fires in Split-Dalmatia County, Croatia, March 2022
(shown in Plate Carrée projection)

will be high. Although there are various indices in the literature for detecting fires and their
consequences, such as Normalized Difference Vegetation Index (NDVI), Burned Area Index
(BAI) and Normalized Burn Ratio (NBR), which are based on specific bands, in this paper
we will focus to the use of direct bands [333, 334].

The EFFIS dataset presents the ground-truth values of burned area. Patches extracted
from the Sentinel-2 images related to burned area are labeled as 1, while other parts of the
Sentinel-2 images are labeled as 0, indicating non-burned area.

In order to evaluate model performance at different patch sizes, there were constructed
three datasets with patch sizes of 10 × 10, 32 × 32 and 64 × 64 pixels. For each fire incident
the same number of patches was extracted from pre-fire image and post-fire image, creat-
ing 4D data with the shape (number_of_samples, number_of_bands, patch_size, patch_size,
number_of_time_frames). For each patch size the shape of the whole dataset was (1012, 6,
10, 10, 2), (1156, 6, 32, 32, 2) and (356, 6, 64, 64, 2). Each sample contains 12 band values
in total - 6 bands for each time frame, where the patch size is either 10 × 10, 32 × 32, or 64

128



Chapter 8: EVALUATION OF 4D–CNN MODEL

× 64 pixels. The dataset for each patch size was split as 60:20:20, where 60% of data was
used for model training, 20% for validation, and 20% for model testing to avoid overfitting.

8.2.3. Model Implementation

At the time of writing this doctoral dissertation, well-known frameworks such as Tensor-
Flow and PyTorch did not support direct 4D convolutions. To overcome this limitation, a
pseudo-4D approach was implemented using 3D convolutional neural networks that process
multiple time instants sequentially. While traditional 3D-CNNs handle three dimensions
(height, width, and spectral bands) at once, this approach is extended by incorporating the
temporal dimension through sequential processing of data from different time steps. This
method allows four dimensions to be effectively modeled: spatial (height and width), spec-
tral, and temporal characteristics of the data simultaneously. The temporal information is
particularly important as changes in the landscape over time are captured.

In this section the proposed architecture of 4D-CNN will be described only for dataset
containing 32 × 32 patch sizes to avoid repetition, because same architecture was used for
datasets containing 10 × 10 and 64 × 64 patch sizes. Figure 8.2 illustrates the proposed
4D-CNN architecture.
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Figure 8.2. 4D-CNN Architecture

This architecture processes input patches of size 6 × 32 × 32 × 2, representing Sentinel-2
pre- and post-fire images. Dimension 6 represents the number of spectral bands, 32 × 32
represents the spatial dimension, and 2 represents two time frames (before and after the fire
event). As mentioned before, 4D convolutional layers are not available in well-know Python
frameworks so 3D convolutional layers are used to extract spectral-spatial-temporal features.
The network has a total of four 3D convolutional layers. The first 3D convolutional layer uses
32 filters and a 3 × 3 × 3 kernel with ReLU activation function. This layer is followed by
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a MaxPooling layer that reduces the spatial dimension, but at the same time preserves the
spectral and temporal dimensions. In following two 3D convolutional layers, the number of
filters is increased to 64, which are also followed by a MaxPooling layers that reduces the
spatial dimension to 8 × 8 and 4 × 4, respectively. Furthermore, in the last 3D convolutional
layer there is an additional increase in the number of filters to 128, which is followed by a
Global Average Pooling 3D layer that reduces dimensionality by averaging all spatial and
temporal dimensions, resulting in a 1D vector of 128 features. After feature extraction, the
model applies a fully connected (dense) layer with 64 units and a ReLU activation function,
followed by a dropout layer with a rate of 0.5 to prevent overfitting. In the last dense layer
which is also the output layer of one unit, the Sigmoid activation function was used for
the binary classification of burned (1) or unburned (0) areas. All convolutional layers use
the ’same’ padding to maintain spatial dimensions before pooling. The total number of
parameters that can be trained in the model is 397,409. In this 4D-CNN, all three key aspects
spectral, spatial, and temporal are learned and used for more accurate predictions of burned
and nonburned areas.

8.3. Results

This section describes the results of the proposed 4D-CNN model for predicting burned
areas based on Sentinel-2 imagery. The metrics described in Section 6.2.4 were used to eval-
uate the effectiveness of the proposed model, namely Accuracy, F1-Score, Recall, Precision,
Confusion Matrix, AUC and ROC curve. The comparison was made on the train and test
datasets for different size of patches. Model is trained and tested on a system with an In-
tel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 16 GB of RAM, without GPU acceleration.
Due to the relatively small dataset size, consisting of only pre-fire and post-fire images, the
complete training and testing process took less than 10 minutes for all patch sizes.

8.3.1. 4D-CNN Model Performance

The proposed 4D-CNN model shows strong performance in detecting burned areas in the
Split-Dalmatia County area for different patch sizes. Figure 8.3 shows the confusion matrices
for the training and testing datasets for different patch sizes: 10 × 10, 32 × 32 and 64 ×
64, respectively. The confusion matrix indicates how well the model classified burned and
unburned areas. Analyzing the confusion matrices for the training dataset (first column), it
can be observed that for the patch size of 32 × 32 the model had the highest number of false
positive and false negative classifications. On the other hand, for the testing dataset (second
column), the confusion matrix for the 10 × 10 patch size shows the highest number of false
positive and false negative classifications.

Figure 8.4 shows the detailed performance of the metrics for different patch sizes, as well
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Figure 8.3. Confusion matrices for the 4D-CNN model illustrating classification
performance for various patch sizes in detecting burned and unburned areas

as individually for the ’Burned’ and ’Unburned’ classes, on the training and testing datasets.
The model achieved the highest overall accuracy of 0.98 on the training dataset for the 10 ×
10 patch size, while for the 32 × 32 patch size it achieved the highest accuracy of 0.97 on the
testing dataset. It can be observed that a balanced overall accuracy in data classification is
achieved for a patch size of 32 × 32 in both datasets. This optimal configuration allowed the
model to maintain a balanced performance in all metrics for a 32 × 32 patch size, with values
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greater than 0.95 achieved for both ’Burned’ and ’Unburned’ classes. In addition, the model
shows consistent performance at different patch sizes, with the performance difference less
than 5% between the training and testing datasets.

Figure 8.4. Performance metrics of the 4D-CNN model for various patch sizes on train and
test datasets

Further analysis of the model’s classification performance was performed using receiver
operating characteristic (ROC) curves and corresponding area under the curve (AUC) values.
This analysis was performed for both the train and test datasets to provide a comprehensive
evaluation of the model’s effectiveness. Figure 8.5 shows ROC curves and AUC values for
each patch size.

For the smallest patch size of 10 × 10, the ROC curves for both datasets show a sharp
rise in the upper left corner, indicating a high ability of the model to discriminate between
burned and unburned areas. The AUC values show that the model achieved a perfect score
of 1.00 on the training dataset, while it achieved an AUC of 0.97 on the testing dataset.

For the medium patch size of 32 × 32, the ROC curves for both datasets have almost
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Figure 8.5. ROC curves with AUC values for the 4D-CNN model on different patch sizes for
both train and test datasets

identical patterns with a steep rise at low false positive rates, suggesting optimal classification
performance. The AUC value on the training dataset was 0.99, while on the testing dataset
the model achieved a perfect score of 1.00.

For the largest patch size of 64 × 64, the ROC curves show similar patterns to the 32
× 32 patch size, but with a slightly more gradual increase. This is particularly evident on
the test dataset at lower false positive rates. Despite this, the model maintains consistent
performance with AUC values of 0.98 for both datasets.

It is worth noting that all patch sizes achieved AUC values greater than 0.97. This indi-
cates excellent classification performance with respect to the spatial resolution of the dataset.
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Moreover, this suggests that the model is suitable for detecting burned areas for different
patch sizes, allowing it to adapt to different scales of analysis with exceptional results.

8.3.2. Qualitative Analysis

Qualitative analysis of the 4D-CNN model, based on the visualization of predicted values,
reveals how well the proposed model predicts burned areas on Sentinel-2 datasets. The
analysis is performed for all three datasets with different patch sizes (10 × 10, 32 × 32, and
64 × 64), which were used during model training. The ground truth data for actual burned
areas are marked as Site 1 and Site 2 with white polylines representing burned areas.

Figure 8.6 shows the map generated from the predictions for the dataset where the patch
size was 10 × 10. The model successfully detected a large burned area (Site 1), where
the model effectively captured the intricate boundary details within the burned area, which
relate to areas that were not affected by the fire. At Site 2, the model successfully detected
two larger fires, while the smallest one was not detected. For patches of size 10 × 10, it
is observed that the model creates a fine-grained pattern, evenly distributed, with a certain
distance between the patterns. However, such a pattern results in fragmented representations,
which is particularly noticeable in more densely burned areas such as Site 1, and may lead to
misinterpretation of burned areas. In both areas, Site 1 and Site 2, the model also produces
false positive predictions outside the actual burned areas.

Figure 8.7 shows a map generated from the model’s predictions for patches of size 32
× 32. The model successfully detected the large fire at Site 1, while at Site 2 it failed to
detect the smallest fire. Compared to the map generated for 10 × 10 patches, the model
better connects the detected burned areas, which contributes to spatial continuity and more
precise boundaries of burned areas. The detection pattern shows improved coherence in the
central burned area, with clearer distinction between burned and unburned patches. Thus,
the 4D-CNN model for 32 × 32 patches strikes a better balance between detail retention and
generalization, although it still produces a certain number of false positive predictions.
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Figure 8.6. Predicted burned area map using a 10 × 10 patch size

Figure 8.7. Predicted burned area map using a 32 × 32 patch size
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Figure 8.8 shows the map generated for patches of size 64 × 64. As for the previous
two patch sizes, the model successfully detected all fires except the smallest one located at
Site 2. It can be noted that the model for this patch size tends to generalize more, although
the predicted values are not as smooth as for the 32 × 32 patch size, because of their size,
they give a blocky, rectangular pattern in the figure. The larger patch size creates more
continuous detection areas but may oversimplify complex burn patterns, especially visible in
the transition zones between burned and unburned areas. Given the size of the patch, false
positive predictions will indicate a larger burned region than it actually is, which may lead
to an exaggeration of burned areas, so it is necessary to further verify such results before
drawing final conclusions.

Figure 8.8. Predicted burned area map using a 64 × 64 patch size

8.4. Discussion

This section presents a discussion of how the 4D-CNN model performs for different patch
data sizes and how these affect the spatial patterns of predicted burned areas. Also, the
limitations of the model are reviewed and guidelines for future research are proposed, with
the aim of further improving the accuracy and efficiency of the model.
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8.4.1. Performance and Insights of the 4D-CNN Model

The experimental results demonstrate the significant ability of the 4D-CNN model in detect-
ing burned areas using multi-temporal Sentinel-2 data. In the following, the questions raised
in the introduction of this chapter will be discussed, providing insights into the model’s per-
formance (RQ1) and the impact of patch size selection (RQ2).

RQ1: How accurately can burned areas be detected using 4D-CNN and multi-temporal

Sentinel-2 data?

The 4D-CNN model showed exceptional performance in detecting burned areas using
deep learning and multi-spatial-spectral-temporal data from the Sentinel-2 satellite. Using
Sentinel-2 data with its time resolution of 5 days between images of the same scene proved
to be good choice. This timeframe is too short for significant recovery of the burned area
which enables model to accurately make a change detection.

The proposed model achieved very high scores in all evaluation metrics and dataset con-
figurations, with minimal difference in performance (less than 5%) between the training and
testing datasets. The model resulted in best performance at a patch size of 32 × 32, where
misclassifications were reduced to only three instances for the categories of false positive and
false negative results on the test dataset. The model achieved balanced metrics of 0.97 for
Precision, Recall, F1-Score and Accuracy on both datasets (training and testing). Addition-
ally, the model achieves an AUC value of 0.99 on the training dataset and 1.00 on the testing
dataset, confirming its robustness in distinguishing between burned and unburned areas.

Compared to existing methods in the literature shown in Table 8.1, the proposed 4D-
CNN approach demonstrates competitive performance, matching or surpassing the accu-
racy of recent deep learning approaches such as the U-Net inspired architecture (Seydi et
al. [332], 97.07%). Furthermore, it outperforms traditional methods such as spectral index
and thresholding, which achieve accuracies between 84% and 96%, and well-established ma-
chine learning algorithms like Support Vector Machines and Random Forest, which achieve
accuracies between 91% and 95%. However, these evaluation were not performed on the
same dataset, so the algorithms metrics cannot be directly compared.

RQ2: How does the patch size affect the model’s ability to detect and map burned areas

of different spatial sizes?

Quantitative and qualitative analysis reveal a clear relationship between patch size and
model mapping precision. The different patch sizes used in this study offer important insights
into the model’s ability to detect and map burned areas of different sizes and shapes.

For the smallest patch size of 10 × 10 the model showed high accuracy of 0.98 on the
training data set. However on the test dataset it drops to 0.93, which is still a high score but
indicates some variability in the model generalization on the test dataset. Confusion matrices
show an increased number of false positive predictions, especially in border areas of burned
regions. The ROC curves for this patch size show a sharp increase in the upper left corner,
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Table 8.1. Comparison of Remote Sensing Methods for Burned Area Detection

Paper Year Overall Accuracy Method Data Source

Petropoulos et al. [318] 2011 95.78% Support Vector Machines Landsat TM
Quintano et al. [313] 2018 84% Combination of Spectral Index Landsat-8 and

and Thresholding Sentinel-2
Lima et al. [315] 2019 96% Spectral Index Thresholding Sentinel-2
Roy et al. [320] 2019 92% Random Forest Change Detection Landsat-8 and

and Region Growing Techniques Sentinel-2
Barboza Castillo et al. [314] 2020 94% Thresholding using Spectral Index Sentinel-2
Syifa et al. [321] 2020 92% Support Vector Machine Sentinel-2

and Imperialist Competitive Algorithm
Ngadze et al. [322] 2020 92% Random Forest Sentinel-2
Seydi et al. [319] 2021 91.02% Random Forest with Sentinel-2

Spectral and Spatial Features
Seydi et al. [332] 2022 97.07% Deep Learning Approach Sentinel-2

inspired by U-Net architecture
Proposed 4D-CNN 2024 97% Deep Learning Approach Sentinel-2

with an AUC score of 1.00 on the training set and 0.97 on the test set, confirming the high
discriminative ability of the model. Smaller patches allow model to recognize finer details,
but increase sensitivity to noise and local variation, which can reduce model’s accuracy.

For the medium patch size of 32 x 32, the model showed consistent performance across
both training and testing datasets. The confusion matrices revealed the best distribution of
false positive and false negative predictions. For all performed metrics this model achieved
score of 0.97 across all evaluation criteria on both training and testing datasets, which suggest
strong model’s capability for generalization. The ROC curves for this patch size show almost
identical patterns with a steep rise at low false positive rates, achieving an AUC value of 0.99
on the training dataset and a perfect score of 1.00 on the testing dataset. The model for this
patch size appears to provide sufficient spatial context to accurately interpret the spectral and
temporal patterns associated with burned areas.

For the largest patch size of 64 x 64, model showed a tendency for more conservative
predictions, as reflected in perfect precision (1.00) but lower recall (0.86) for burned areas
on the test dataset. This indicates that larger patches may provide more stable predictions of
larger burned areas, but may reduce the ability to detect smaller burned areas and complex
burn patterns within them. The slightly flattened ROC curves, with an AUC value of 0.98
for both datasets (training and testing) confirm these findings, indicating some loss of model
precision in recognizing fine details due to the large sample size.

Additional validation of these findings was conducted through qualitative analysis at two
different locations: Site 1, which contains the large fire used during model training, and Site
2, which includes smaller fires that were not part of the training set. This comparison made
it possible to assess the generalization ability of the model through different patch sizes in
real conditions. At Site 1, for all patch sizes model successfully detected a large burned
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area, with the 32 x 32 patch size showing the best balance between preserving boundary
detail and mapping continuity. However, testing at Site 2 revealed limitations of the model
in detecting very small burned areas, where the smallest fire was not successfully detected
at any patch size. This confirms earlier quantitative findings on the effect of patch size on
model’s detection ability.

8.4.2. Limitations

There are several limitations of the current study:

• The model’s ability to detect very small burned areas - although 10 x 10 patches were
used, which represents the lowest spatial resolution available in Sentinel-2 imagery,
this was not sufficient to detect the smallest fire at Site 2. This limitation could be
particularly significant in areas where small fires are frequent, so the model in its
current configuration would not be adequate for application.

• The model was trained and tested in one specific geographic area, which may limit its
ability to estimate burned areas in different landscape or fire patterns.

• The time resolution of Sentinel-2 data (5 days), although sufficient for the detection
of burned areas, may result in missed changes when detection is required in a shorter
period of time. In addition, the presence of clouds on Sentinel-2 images can interfere
with continuous monitoring and increase the time until the next usable image.

8.4.3. Future Research Directions

The current study opens up several promising directions for future research:

• Research into a hybrid approach combining different patch sizes could overcome cur-
rent limitations in detecting fires of different sizes and shapes. In particular, an adap-
tive mechanism could be developed that would automatically select the optimal patch
size based on the characteristics of the analyzed area.

• Different data sources could improve the model’s detection capabilities, especially
when the data comes with different spatial and temporal resolutions. In addition, this
could reduce the limitations caused by cloudiness — in the event that Sentinel-2 cap-
tures a cloudy image, another data source could provide a cloud-free image.

• Model validation in different geographical areas with diverse types of vegetation and
terrain characteristics. For example, the application of transfer learning techniques
could facilitate the adaptation of the model to new areas with minimal additional train-
ing.
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8.5. Conclusion

In this chapter, a 4D-CNN model for the burned area detection by using time series of
Sentinel-2 data is presented. The research focuses on the 4D-CNN model ability to de-
tect differences in spectral ratios between pre and post fire imagery, demonstrating effective
capture of spatial, spectral and temporal patterns.

A detailed analysis was performed with three different patch sizes for the study area
located in Split-Dalmatia County, which resulted in high model performance, with an overall
accuracy greater than 0.93 for all tested sizes. For a patch size of 32 x 32 model provided
an optimal balance between detail detection precision and prediction stability, achieving an
accuracy of 0.97 on the test dataset. Smaller patches (10 x 10) were effective in detecting
small details but were more sensitive to noise. Larger patches (64 x 64) provided more stable
predictions for large burned areas but reduced the ability to detect smaller areas. Qualitative
analysis at two different locations confirmed the model’s ability to successfully detect large
burned area, but indicated limitations in detecting very small burned areas.

The proposed approach has certain limitations, but also the potential for further improve-
ments that will be useful for future research and practical application in fire management.
These findings may help in the development of more effective fire monitoring and manage-
ment systems, especially in Mediterranean regions similar to the study area. More precise
burned area mapping will help fire analyst to better estimate consequences of fire.
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9. A COMPARATIVE ANALYSIS OF CNN MODELS
FOR SEMANTIC SEGMENTATION

This chapter systematically investigates and compares multiple CNN architectures (1D-
CNN, 2D-CNN, 3D-CNN, and 4D-CNN) for land cover semantic segmentation utilizing
Sentinel-2 satellite imagery. Segmentation is performed on the top-level classes of CORINE
Land Cover (CLC) data. The research evaluates how varying CNN architectures affects
segmentation accuracy and prediction quality, providing both quantitative metrics and qual-
itative visual assessments of the results.

The chapter structure is as follows. In the Introduction section the context for CNN
comparison is provided; in Materials and Methods, the dataset and CNN architectures are
described. The Results section presents experimental outcomes and Discussion analyzes
performance variations. Finally, the Conclusion, summarizes findings and future directions.

9.1. Introduction

Land cover classification and mapping are of great importance for environmental monitor-
ing, urban planning and resource management. Landscapes are continuously changing due
to human activities, natural disasters, and changing weather conditions, so making timely in-
formation is crucial for decision-makers and researchers. Traditional classification methods
are time-consuming and often subjective, which justifies the need for automated and reliable
classification techniques [100].

Convolutional neural networks as a part of deep learning have shown exceptional effi-
ciency in processing and analyzing remote sensing data [97]. The availability of high-quality
satellite imagery enables the development of different CNN models that apply classifica-
tion, regression, or segmentation methods depending on the observed problem. Specifically,
Sentinel-2 imagery combined with the CORINE land cover database provides an opportunity
to develop and evaluate sophisticated segmentation approaches [58].

Various CNN architectures have demonstrated effective results in remote sensing appli-
cations, with each dimensional approach offering distinct advantages. The choice between
1D, 2D, 3D, or 4D CNN architectures significantly impacts both segmentation accuracy and
computational efficiency - 1D-CNNs excel at spectral feature extraction, 2D-CNNs are effec-
tive for spatial features, and 3D-CNNs can extract joint spectral-spatial features [96]. More
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details about each CNN can be found in Section 3.5.
This chapter compares the performance of 1D, 2D, 3D and 4D-CNN architectures for

land cover segmentation using Sentinel-2 images and CORINE Land Cover data. A system-
atic comparison of individual models was made using a similar architecture and the same
data set, which enables an objective insight into the selection of a suitable model for the
observed land cover segmentation problem.

The main objectives of this chapter are:

• evaluate the performance differences between 1D, 2D, 3D and 4D-CNN architectures,

• analyze the impact of CNN architectures on segmentation accuracy,

• provide quantitative performance metrics and qualitative visual assessment of segmen-
tation results.

The comparison aims to provide insights into the strengths and limitations of each ar-
chitectural approach, helping researchers and practitioners make informed decisions when
selecting CNN models for land cover segmentation tasks. The findings from this analysis
will contribute to the growing body of knowledge on deep learning applications in remote
sensing and guide future developments in automated land cover mapping.

9.2. Materials and Methods

9.2.1. Study Area

Figure 9.1 shows the study area located in Split-Dalmatia County in Croatia. This area was
chosen due to the variety of land types, including forests, agricultural areas, settlements and
the sea, thus ensuring the heterogeneity of the scene, which is essential for the application of
the segmentation technique. The study area, marked by a red rectangle on the map, covers
1311 × 983 (width × height) pixels at 10-meter spatial resolution.

9.2.2. Dataset Construction and Preprocessing

The datasets were constructed from Sentinel-2 images, which were labeled based on land
use information obtained from the CORINE dataset. Sentinel-2 images were taken from the
Copernicus Data Space Ecosystem (Copernicus Sentinel data [2023] [284]). For each month
in 2023, one product with the smallest cloud coverage was selected, but for all products
cloud coverage didn’t exceed 10%. Downloaded images are Level-2A, i.e. they are atmo-
spherically corrected. All images were downloaded in .jp2 format and resampled to a spatial
resolution of 10 m.

The CORINE Land Cover dataset is prepared using the European Union’s Copernicus
Land Monitoring Service information [335]. The CLC product offers a pan-European land
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Figure 9.1. Study area in Split-Dalmatia County, Croatia (shown in Plate Carrée
projection)

cover and land use inventory. There are a total of 44 thematic classes, from forest areas to
individual vineyards. In this work, the dataset for the reference year 2018 was used, and it
is available as vector and raster data with a spatial resolution of 100 m. In order to make
the CLC dataset consistent with the Sentinel-2 dataset, they were resampled to a spatial
resolution of 10 m.

Considering the large number of classes provided by the CLC dataset, it was reclassified
into five main groups for simplicity. Each of these main groups is associated with the corre-
sponding CLC classes, which are defined as: ’Urban areas’, ’Agricultural areas’, ’Woodland
and forest’, ’Wetlands and other natural areas’ and ’Water-related areas’ [336]. The labels
were one-hot encoded, transforming each class label into a binary vector where the target
class is represented by 1 and other classes by 0, which is essential for semantic segmentation
tasks.

Datasets were created for each individual CNN, considering their degree. Therefore, for
1D-CNN, a dataset was created that represents the spectral values of pixels of all 12 bands
extracted from 12 monthly scenes during the year 2023. The final dataset has a shape of (14
745 600, 12). The dataset for the 2D-CNN model was created to find spatial patterns. The
final dataset has a shape of (691 200, 32, 32, 1), where the first value indicates the number of
samples, the next two values indicate the size of the 32 × 32 patch, and the number 1 indicates
that it was extracted for every single band. For the 3D-CNN model, a dataset with a shape of
(57 600, 32, 32, 12) was created, which represents data cubes with a spatial dimension of 32
× 32 through 12 spectral bands. For the dataset intended for the 4D-CNN model, four scenes
representing distinct seasons (winter, autumn, summer, and spring) were selected to capture
the most significant temporal variations in land cover characteristics. The final dataset has a
shape of (4, 983, 1311, 12), where the first argument indicates that there are 4 scenes, 983 ×
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1311 indicates the size of the scene (height x width), and 12 is the number of bands.

9.2.3. CNN Architecture

For all models (1D-CNN, 2D-CNN, 3D-CNN and 4D-CNN) similar architecture was used
to enable objective comparison between the models. Figure 9.2 shows an architecture that
follows a sequential pattern of convolutional blocks. While popular segmentation architec-
tures like U-Net [291] employ skip connections and a symmetric encoder-decoder path, the
proposed architecture has a simpler sequential structure adapted to the specific requirements
of land cover segmentation.

The proposed architecture maintains a consistent structure in all model variants (1D, 2D,
3D and 4D), with adjustments to the specific requirements of the dimensionality of the input
data. The input layer processes different forms of data:

• The 1D model uses the shape [12, 1] which represents 12 spectral values of one pixel,

• The 2D model uses the shape [32, 32, 1], which represents the spatial size of the patch
of an individual channel,

• The 3D model uses the shape [32, 32, 12, 1] which represents spatial-spectral data,

• The 4D model uses the shape [4, 32, 32, 12] which represents seasonal spatial-spectral
data.

The architecture’s main structure contains three convolutional blocks with model-specific
filter configurations. The first block implements 32 filters in the 1D model, 64 filters in the
2D model, and 32 filters in both 3D and 4D models. Moving to the second block, the 1D
model uses 64 filters, the 2D model uses 128 filters, while both 3D and 4D models use 64
filters. In the final block, the 1D and 2D models employ 128 filters, whereas the 3D and 4D
models use 64 filters. The number of filters gradually increased through the blocks, which
increased the complexity of the model.

Each convolutional block for 3D and 4D architectures is followed by batch normaliza-
tion and Max Pooling operations. Also, the kernel sizes are adjusted for each model based on
their dimensionality using the ’same’ padding. 1D and 2D architectures include a basic de-
coder path at the end of the convolutional blocks, while 3D and 4D architectures use Global
Average Pooling followed by a Dense layer with 64 units and Dropout (0.3). The final layer
in all architectures is a Dense layer using Softmax activation function for the classification
of five different land cover types, outputting a one-hot encoded prediction vector for each
pixel/patch.

The total number of trainable parameters varies across architectures: the 1D-CNN has
111 301 parameters, 2D-CNN has 926 021 parameters, 3D-CNN has 694 981 parameters,
and 4D-CNN has 288 517 parameters, reflecting the different complexities of each approach.
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CNN Architecture
Input Layer

First Conv Block 1D: 32 2D: 64 3D/4D: 32 (x2)

BatchNorm(3D/4D)

MaxPooling

Second Conv Block 1D: 64 2D: 128 3D/4D: 64 (x2)

BatchNorm(3D/4D)

MaxPooling

Third Conv Block 1D: 128 2D: 128 3D/4D: 64 (x2)

BatchNorm(3D/4D)

MaxPooling

Decoder Path(1D/2D)

GlobalAveragePooling(3D/4D)

Dense(64), Drop(0.3)(3D/4D)

Dense(5), Softmax

1D: [12, 1]
2D: [32, 32, 1]
3D: [32, 32, 12, 1]
4D: [4, 32, 32, 12]

Kernels:
1D: (3)
2D: (3,3)
3D: (3,3,3)
4D: (2,3,3)

Pool size:
1D: (2)
2D: (2,2)
3D: (2,2,2)
4D: (1,2,2)

Figure 9.2. Unified CNN Architecture showing all model variants (1D/2D/3D/4D)

9.3. Results

This section presents the quantitative and qualitative results of different CNN architectures
(1D-CNN, 2D-CNN, 3D-CNN, and 4D-CNN) for land cover segmentation using Sentinel-
2 imagery. The performance of each model was evaluated using Intersection over Union
(IoU) and Dice coefficient metrics and their mean values, which are described in Section
4.3.3. The comparison was made across five CORINE Land Cover classes: Urban Areas,
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Agricultural Areas, Woodland and Forest, Wetlands and Natural Areas, and Water-related
Areas. Additionally, a computational performance analysis was conducted to assess the
training efficiency of each architecture. All models were implemented and tested on a system
with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 16 GB of RAM.

9.3.1. Performance Analysis of CNN Architectures

The results show the segmentation performance in different land cover classes using CNN
architectures designed to process the spectral, spatial and temporal information of Sentinel-
2 imagery. The performance metrics are presented in three tables: Table 9.1 shows the
Intersection over Union (IoU) scores for each class and Table 9.2 presents the corresponding
Dice coefficients.

Table 9.1. IoU Scores Comparison of Different CNN Architectures

Model
Per-class IoU

Urban Agricultural Woodland & Wetlands & Water-related
Areas Areas Forest Natural Areas Areas

1D-CNN 0.241 0.303 0.647 0.220 0.921
2D-CNN 0.748 0.722 0.875 0.734 0.968
3D-CNN 0.926 0.855 0.942 0.810 0.999
4D-CNN 0.308 0.562 0.477 0.127 0.920

Table 9.2. Dice Coefficient Comparison of Different CNN Architectures

Model
Per-class Dice Coefficient

Urban Agricultural Woodland & Wetlands & Water-related
Areas Areas Forest Natural Areas Areas

1D-CNN 0.389 0.465 0.786 0.360 0.959
2D-CNN 0.856 0.839 0.934 0.846 0.984
3D-CNN 0.962 0.922 0.970 0.895 0.999
4D-CNN 0.471 0.720 0.646 0.225 0.958

The 1D-CNN model, which was implemented to focus on the spectral information of the
satellite image, showed modest overall performance with an achieved average IoU of 0.466
and Dice of 0.592. Nevertheless, the model achieved excellent results in predicting the ’Wa-
ter’ class (IoU 0.921 and Dice 0.959) compared to other CLC categories due unique spectral
signature of water bodies. Water has specific absorption and reflection in different parts of
the spectrum, especially in the green (B03) and short-wave infrared (SWIR) spectrum, which
allows clear differentiation from other categories such as vegetation or built-up areas [337].
Furthermore, the model failed to classify complex types of land cover, which emphasizes
the limitation of the model to perform classification based on spectral values, excluding the
possibility of detecting the spatial relationship of individual classes.
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The 2D-CNN model showed significant improvement with an average IoU value of 0.810
and a Dice score of 0.892. It has consistent performance in different land cover classes,
where it achieved the best results in the classification of water bodies (IoU 0.968, Dice
0.984) and woodland/forest areas (IoU 0.875, Dice 0.934). The improved performance of
the model indicates the importance of spatial context in land cover classification, although
the model still shows possibility for improvement in the classification of urban (IoU 0.748,
Dice 0.856), agricultural (IoU 0.722, Dice 0.839) and wetlands (IoU 0.734, Dice 0.846).

The 3D-CNN model achieved the best results in land cover classification with mean IoU
and Dice scores of 0.906 and 0.950, respectively. The model outperformed other architec-
tures in all land cover classes. This architecture achieved an IoU value below 0.9 only in the
agricultural (IoU 0.855, Dice 0.922) and wetlands (IoU 0.810, Dice 0.895) classes, while a
Dice value below 0.9 was recorded only for wetlands. This exceptional performance of the
model highlights the advantage of simultaneous processing of spectral and spatial features
of satellite images for accurate land cover segmentation.

The 4D-CNN model, similar to the 1D-CNN, did not achieve satisfactory results in land
cover classification, despite its more complex architecture, which includes temporal infor-
mation in addition to spatial and spectral components. The increased complexity of the 4D
architecture, while theoretically more comprehensive, might lead to challenges in effectively
learning from the limited number of temporal instances. The model might also be more sen-
sitive to seasonal variations that are not necessarily indicative of land cover class differences,
such as temporary changes in vegetation appearance that do notreflect the underlying land
cover category. The model achieved a mean IoU value of 0.479 and a Dice value of 0.604.
IoU values across individual classes ranged from 0.127 to 0.920, and Dice values from 0.225
to 0.958, indicating high variability in model performance.

The training process for all CNN architectures was configured with a maximum of 100
epochs and implemented with an early stopping mechanism (patience = 10) to prevent over-
fitting. Table 9.3 presents the computational requirements of each CNN architecture. While
1D-CNN was the only model to complete all 100 epochs, 4D-CNN required the fewest
epochs (28) before early stopping was triggered. In terms of processing time, 2D-CNN
showed the longest total training time of 43.78 hours, while 4D-CNN completed training in
just 0.08 hours.

Table 9.3. Computational Performance of CNN Architectures

Model Epochs Time per Epoch Total Training Early Stopping
Completed Time (hours) Triggered

1D-CNN 100 8m 30s 14.17 No
2D-CNN 71 37m 43.78 Yes
3D-CNN 43 54m 35s 39.12 Yes
4D-CNN 28 10s 0.08 Yes
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9.3.2. Qualitative Analysis

Figure 9.3 shows a visual comparison between the original CLC map and the predicted maps
based on 1D, 2D, 3D, and 4D-CNN models of the observed area. The Sentinel-2 scene from
July 16, 2023 was used for the qualitative analysis, while four scenes from 2023 (March 23,
June 21, September 9, and December 28) were used for the 4D-CNN model.

True Corine Land Cover 1D-CNN Prediction

2D-CNN Prediction 3D-CNN Prediction

4D-CNN Prediction

Legend

Figure 9.3. Comparison of True Land Cover Map with CNN Predictions

The map predicted by the 1D-CNN model shows significant noise and fragmentation
in all classes, creating a ’salt and pepper’ effect across the map. Such results confirm the
limitations of the model that relies exclusively on the spectral information of the satellite
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image, which is not sufficient for precise land cover segmentation.
The map predicted by the 2D-CNN model shows improved spatial coherence of classes

compared to the map predicted by 1D-CNN model. However, the model shows uncertainty in
boundary areas between different classes, especially where Agricultural and Wetland classes
meet Urban or Forest classes. This is particularly visible in the central part of the map, where
Agricultural areas are fragmented along the Forest borders.

The map predicted using the 3D-CNN model shows the closest similarity to the original
CLC map. The model proved to be successful in recognizing spatial patterns and class
boundaries, among which the Forest area and Water body classes stand out in particular.
Also, transitions between different types of land cover are more natural and consistent with
the reference data.

The map predicted using the 4D-CNN model shows the main features of the classes, but
the finer details that can be seen in the original CLC map are lost, especially in areas with
mixed land cover types. Despite being the most complex data set, containing spectral, spatial
and temporal features, this model oversimplifies some land cover patterns. The temporal
feature seems to introduce some uncertainty into class boundaries, and this is particularly
visible in Agricultural and Wetland areas.

9.4. Discussion

A comprehensive comparison of the four CNN architectures used in this study for land cover
segmentation is presented in Table 9.4. Experimental results showed significant variations in
both quantitative and qualitative analyses.

Table 9.4. Comprehensive Performance Analysis of CNN Architectures

Model Mean Best Worst Performance Classes
IoU/Dice Class Class Consistency >0.9 IoU

1D-CNN 0.466/0.592 Water Wetlands Low 1
(0.921) (0.220)

2D-CNN 0.810/0.892 Water Agricultural Medium 1
(0.968) (0.722)

3D-CNN 0.906/0.950 Water Wetlands High 3
(0.999) (0.810)

4D-CNN 0.479/0.604 Water Wetlands Low 1
(0.920) (0.127)

The 1D-CNN model, although computationally efficient, showed limited performance
with mean IoU/Dice scores of 0.466/0.592. While it performed well in Water class detection
(IoU 0.921), it showed poor performance in other classes, especially Wetlands (IoU 0.220).
Additionally, the predicted map exhibited a "salt and pepper" visual effect, suggesting that
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spectral information alone is not sufficient for accurate land cover segmentation.
The 2D-CNN model showed significant improvement with mean IoU/Dice scores of

0.810/0.892. This suggests that the inclusion of spatial information led to better class co-
herence, which was also evident in the predicted map during qualitative analysis. The dis-
advantages of this model were the longer computational time (43.78 hours) and the lack of
precise definition of class boundaries, especially in Agricultural areas (IoU 0.722).

The 3D-CNN model achieved the highest mean IoU/Dice values of 0.906/0.950, thus
proving to be the most efficient architecture for land cover segmentation. The model demon-
strated the advantage of combining spectral and spatial information. Despite the relatively
long training time of the model (39.12 hours), the high segmentation accuracy justifies the
computational complexity.

The 4D-CNN model, despite the most complex architecture, showed performance com-
parable to the 1D-CNN model (IoU/Dice: 0.479/0.604). Although the model achieved the
shortest computation time, its low consistency in performance and poor class segmentation
suggest that adding a time information may introduce unnecessary complexity without im-
proving land cover segmentation.

The above results show that the most accurate land cover segmentation is achieved by
combining spectral and spatial information using the 3D-CNN model. Adding temporal
information (4D-CNN) or relying solely on spectral information (1D-CNN) did not improve
model performance. It is important to note that, although the CLC map was used as reference
data, it is a static representation of land cover that is updated every six years. In contrast, the
proposed segmentation approach based on Sentinel-2 satellite images enables the monitoring
of dynamic land cover changes with high temporal resolution, which is especially important
for areas with rapid land cover changes or for monitoring seasonal changes.

9.5. Conclusion

This study evaluated the performance of different CNN architectures (1D-CNN, 2D-CNN,
3D-CNN, and 4D-CNN) for land cover segmentation using Sentinel-2 imagery. The
3D-CNN architecture outperformed other models and achieved mean IoU/Dice scores of
0.906/0.950. These results highlight the importance of effectively combining both spectral
and spatial information. While the CLC map provided reliable reference data, its static nature
limits monitoring of dynamic land cover changes. The proposed approach using Sentinel-
2 imagery and CNN-based segmentation offers potential for more frequent and automated
land cover monitoring. Future research could focus on optimizing spatial-spectral feature
extraction while reducing computational costs.
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The main focus of this doctoral thesis was to explore the capabilities of 1D, 2D, 3D, and
4D-CNN architectures in the analysis of multispectral satellite imagery, which represent the
foundation of more complex architectures in deep learning. The research focused on extract-
ing spectral, spatial, and temporal features from satellite images by applying appropriate
degree of CNN architecture. To gain insight into the achievements in this field, the work
first provides a detailed literature review that systematically presents the datasets used, ma-
chine learning techniques, application domains, and problem-specific metrics for different
CNN architectures. The findings are synthesized in the form of an ontology that is pro-
posed to serve as a foundation for decision-making, thus providing a structured framework
for understanding the selection of an appropriate convolution degree for an Earth observation
scenario.

Furthermore, the findings were evaluated through empirical research by selecting case-
study applications. First, the application of 1D-CNN architecture was evaluated by predict-
ing the Secchi disk depth parameter, considering only the spectral features of Sentinel-3
OLCI satellite data. The 1D-CNN architecture demonstrated strong performance, achiev-
ing an R2 value of 0.89 on the test dataset, and outperformed other well-known algorithms
such as C2RCC. The next phase of research focused on the implementation of 2D-CNN,
which achieved 91% accuracy in road detection using spatial features from Sentinel-2 satel-
lite imagery. The model also outperformed more complex architectures such as DeepLabV3,
ResNet-50 and U-Net, demonstrating that the choice of architecture depends on the prob-
lem characteristics rather than just its complexity. Building upon previous architectures, the
implemented 3D-CNN successfully predicted fire propagation potential with an accuracy
of 96% on the test dataset, utilizing both spectral and spatial characteristics of Sentinel-2
satellite imagery. The model also outperformed and demonstrated high results, both quan-
titatively and qualitatively, when compared to 1D-CNN and 2D-CNN. Subsequently, a 4D-
CNN model was implemented for burned area detection using Sentinel-2 satellite imagery
time series, proving the model’s effectiveness in processing spatial, spectral, and temporal
features. The model was tested with three different window sizes in Split-Dalmatia County,
where it achieved optimal results with a 32 x 32 pixel window, reaching 97% accuracy on the
test dataset. Qualitative analysis confirmed the model’s ability to successfully detect large
burned areas, with some limitations in detecting smaller areas. Finally, a comparative anal-
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ysis of all four convolutional neural networks was conducted on land cover segmentation
to gain insight into their advantages and limitations. This analysis confirmed the hypothe-
sis that 3D-CNN would achieve the best results (IoU/Dice scores of 0.906/0.950) due to its
capability to simultaneously extract both spectral and spatial features from satellite images,
which are important for correctly identifying different land cover classes.

Original scientific contributions of this dissertation are:

• Determining the impact of convolution degree on convolutional neural network re-
sults depending on the properties of problems being solved in remote sensing. The
dissertation synthesizes results of a systematic literature review in the form of an on-
tology, providing a practical framework for determining the convolution degree that
would enhance the performance of deep learning applications in remote sensing Earth
observation tasks.

• New methods for predicting spectral, spatial, and temporal phenomena using convo-
lutional neural networks of appropriate degree in remote sensing. The research was
conducted through five different case studies, resulting in novel methods for predict-
ing Earth observation parameters based on multispectral satellite imagery:

– A 1D-CNN architecture for Secchi disk depth prediction using Sentinel-3 satel-
lite imagery spectral features;

– A 2D-CNN architecture for road detection using Sentinel-2 satellite imagery spa-
tial features;

– A 3D-CNN architecture for fire propagation potential prediction using Sentinel-2
satellite imagery spectral-spatial features;

– A 4D-CNN architecture for burned area detection using Sentinel-2 satellite im-
agery spectral-spatial-temporal features;

– A comparative analysis of 1D, 2D, 3D and 4D-CNN architectures for land cover
segmentation using Sentinel-2 satellite imagery.

• A novel approach for determining the type of remote sensing problem in relation to
the applicable degree of convolution. The research provides a blueprint for describing
remote sensing problems by outlining the application domain, machine learning task,
and spectral, spatial, spectral-spatial, and temporal dimensions. The problem descrip-
tion further contributes to the selection of the convolution degree based on the specific
requirements of remote sensing application.

Additional useful result of this research, which do not represent scientific contribution is:

• Practical knowledge and a set of recommendations for selecting the degree of convo-
lution based on the properties of the problem being solved by CNN.
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Findings presented in this thesis hold significant value for both scientists and practition-
ers seeking a systematic framework for selecting appropriate approaches in remote sens-
ing applications. The combination of systematic literature review and empirical evaluation
of CNN-based deep learning applications provides scientifically valid results for informed
decision-making. The case studies encompass diverse aspects of remote sensing, including
machine learning tasks (regression, classification and segmentation), application domains
(sea water quality monitoring, urban planning, land cover mapping, and fire management)
and remote sensing tasks (parameter prediction, object detection, and change detection).

Future research will aim to develop a software framework based on the findings from
this doctoral thesis, which will enable the prediction of phenomena in remote sensing using
1D, 2D, 3D and 4D convolutional neural networks with an expert system for selecting the
appropriate degree of convolution.

In the context of future work, several key directions can be addressed:

• Integration of different data sources such as Sentinel-1 satellite radar data or aerial
imagery, which could improve the robustness and accuracy of the models, reducing
the limitations of individual data sources.

• Development of more efficient and optimized architectures by finding optimal hy-
perparameters or combining different degrees of convolutional layers within a single
model.

• Better generalization of models across different geographical regions using transfer
learning, which could particularly benefit areas with limited datasets.

• Real or near-real time systems, particularly important for applications where response
time is crucial.

• Interpretability and explainability of model decisions, which would result in more re-
liable models, especially important in critical situations such as natural disasters.

In conclusion, this thesis provides a comprehensive and systematic investigation of con-
volution degree’s role in CNN-based deep learning for remote sensing applications. It high-
lights the critical influence of convolution degree on application performance, emphasizing
its importance in enhancing CNNs’ capability to extract meaningful information from remote
sensing data. This work advances the understanding of convolution mechanics in remote
sensing contexts and their contribution to optimizing deep learning models for practical,
high-impact applications.
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[263] A. Lešek, G. Novak, M. Četina and D. Žagar, Modelling transport and decease of Es-
cherichia coli in the coastal sea by using the particle tracking method, 633–634, Ab-
stract book: hosted by Spain Water and IWHR, China. Warszawa: IAHR, 2020/2021,
2020.

[264] J. Soriano-González, E. P. Urrego, X. Sòria-Perpinyà, E. Angelats, C. Alcaraz,
J. Delegido, A. Ruíz-Verdú, C. Tenjo, E. Vicente and J. Moreno, Towards the combi-
nation of c2rcc processors for improving water quality retrieval in inland and coastal
areas, Remote Sensing, 14, 5, 1124, 2022.

[265] D. Kyryliuk and S. Kratzer, Evaluation of Sentinel-3A OLCI products derived using
the Case-2 Regional CoastColour processor over the Baltic Sea, Sensors, 19, 16, 3609,
2019.

[266] S. Hafeez, M. S. Wong, H. C. Ho, M. Nazeer, J. Nichol, S. Abbas, D. Tang, K. H. Lee
and L. Pun, Comparison of machine learning algorithms for retrieval of water quality
indicators in case-ii waters: A case study of hong kong, Remote Sensing, 11, 6, 2019.

[267] J. Chen, S. Chen, R. Fu, D. Li, H. Jiang, C. Wang, Y. Peng, K. Jia and B. J. Hicks, Re-
mote sensing big data for water environment monitoring: Current status, challenges,
and future prospects, Earth’s Future, 10, 2, e2021EF002289, 2022.

[268] N. Nasir, A. Kansal, O. Alshaltone, F. Barneih, A. Shanableh, M. Al-Shabi and A. Al
Shammaa, Deep learning detection of types of water-bodies using optical variables
and ensembling, Intelligent Systems with Applications, 18, 200222, 2023.

[269] Y. Li, K. Shi, Y. Zhang, G. Zhu, Y. Zhang, Z. Wu, M. Liu, Y. Guo and N. Li, Analysis
of water clarity decrease in xin’anjiang reservoir, china, from 30-year landsat tm,
etm+, and oli observations, Journal of Hydrology, 590, 125476, 2020.

174



BIBLIOGRAPHY

[270] A. O. Ok, Automated extraction of buildings and roads in a graph partitioning frame-
work, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2, 79–84, 2013.

[271] Z. Chen, L. Deng, Y. Luo, D. Li, J. Marcato Junior, W. Nunes Gonçalves, A. Awal
Md Nurunnabi, J. Li, C. Wang and D. Li, Road extraction in remote sensing data: A
survey, International Journal of Applied Earth Observation and Geoinformation, 112,
102833, 2022.

[272] A. Abdollahi, B. Pradhan, N. Shukla, S. Chakraborty and A. Alamri, Deep learning
approaches applied to remote sensing datasets for road extraction: A state-of-the-art
review, Remote Sensing, 12, 9, 2020.

[273] V. Mnih, Machine learning for aerial image labeling, University of Toronto (Canada),
2013.

[274] S. Saito, T. Yamashita and Y. Aoki, Multiple object extraction from aerial imagery
with convolutional neural networks, Electronic Imaging, 28, 1–9, 2016.

[275] Z. Zhong, J. Li, W. Cui and H. Jiang, Fully convolutional networks for building and
road extraction: Preliminary results, 2016 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), 1591–1594, 2016.

[276] Y. Wei, Z. Wang and M. Xu, Road structure refined cnn for road extraction in aerial
image, IEEE Geoscience and Remote Sensing Letters, 14, 5, 709–713, 2017.

[277] P. Li, Y. Zang, C. Wang, J. Li, M. Cheng, L. Luo and Y. Yu, Road network extraction
via deep learning and line integral convolution, 2016 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 1599–1602, 2016.

[278] J. Radoux, G. Chomé, D. C. Jacques, F. Waldner, N. Bellemans, N. Matton,
C. Lamarche, R. D’Andrimont and P. Defourny, Sentinel-2’s potential for sub-pixel
landscape feature detection, Remote Sensing, 8, 6, 2016.

[279] T. Hoeser and C. Kuenzer, Object detection and image segmentation with deep learn-
ing on earth observation data: A review-part i: Evolution and recent trends, Remote
Sensing, 12, 10, 2020.

[280] S. Oehmcke, C. Thrysøe, A. Borgstad, M. A. V. Salles, M. Brandt and F. Gieseke,
Detecting hardly visible roads in low-resolution satellite time series data, 2019 IEEE
international conference on big data (big data), 2403–2412, IEEE, 2019.

[281] R. Abdelfattah and K. Chokmani, A semi automatic off-roads and trails extraction
method from sentinel-1 data, 2017 IEEE International Geoscience and Remote Sens-
ing Symposium (IGARSS), 3728–3731, IEEE, 2017.

[282] C. Ayala, R. Sesma, C. Aranda and M. Galar, A deep learning approach to an en-
hanced building footprint and road detection in high-resolution satellite imagery, Re-
mote Sensing, 13, 16, 2021.

[283] P. Mooney, M. Minghini et al., A review of openstreetmap data, Mapping and the
citizen sensor, 37–59, 2017.

175



BIBLIOGRAPHY

[284] Copernicus Data Space Ecosystem, Copernicus data space ecosystem, Programme of
the European Union, managed by the European Space Agency (ESA), 2024, accessed:
August 24, 2024.

[285] Copernicus Data Space Ecosystem, Sentinel-2 Mission, https://documentation.
dataspace.copernicus.eu/Data/SentinelMissions/Sentinel2.html, 2023,
accessed: 2024-09-02.

[286] E. Beauxis-Aussalet and L. Hardman, Visualization of confusion matrix for non-
expert users, IEEE Conference on Visual Analytics Science and Technology (VAST)-
Poster Proceedings, 1–2, sn, 2014.

[287] A. Tharwat, Classification assessment methods, Applied computing and informatics,
17, 1, 168–192, 2021.

[288] Z. Qian, Y. Cao, Z. Shi, L. Qiu and C. Shi, A semantic segmentation method for
remote sensing images based on deeplab v3, 2021 2nd International Conference on
Big Data & Artificial Intelligence & Software Engineering (ICBASE), 396–400, IEEE,
2021.

[289] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition,
Proceedings of the IEEE conference on computer vision and pattern recognition, 770–
778, 2016.

[290] M. Shafiq and Z. Gu, Deep residual learning for image recognition: A survey, Applied
Sciences, 12, 18, 2022.

[291] N. Y. Q. Abderrahim, S. Abderrahim and A. Rida, Road segmentation using u-net
architecture, 2020 IEEE international conference of moroccan geomatics (Morgeo),
1–4, IEEE, 2020.
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od čega bi posebno istaknula 9th International Conference on Forest Fire Research održanoj
u Coimbri, Portugal i Joint Urban Remote Sensing Event održanoj u Heraklionu na Kreti,
Grčka.
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