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Adaptive Formative Assessment Based on Enhanced Bayesian Knowledge
Tracing Model

Abstract:

This doctoral thesis utilised enhanced Bayesian Knowledge Tracing (BKT) models to as-
sess student knowledge adaptively and to extend the standard functionalities of widely used
Learning Management Systems (LMS). It was hypothesised that incorporating time spent on
task and the number of code evaluations in the introductory programming domain would en-
hance student performance’s predictive accuracy and knowledge mastery estimation within
the vanilla BKT model. Empirical research employing in situ quasi-experimental design
was conducted during an Introduction to Programming in Python course, involving a sub-
stantial sample of 174 undergraduate students. The weekly course topics were structured into
granular Domain Knowledge Components (DKC) and Controlled Environment formative as-
sessments (CE). The study examined 18 BKT models incorporating various combinations of
Prior knowledge, Guess, Slip, Learn and Forgets parameter probabilities, implemented using
the Python library for cognitive modelling, pyBKT. In general, the enhanced BKT models
outperformed the baseline vanilla model in predicting student performance across multiple
DKCs. Also, the enhanced BKT models outperformed the vanilla model in estimating stu-
dents’ knowledge mastery. Regarding the model convergence, the enhanced BKT models
provided more effective and reliable paths to knowledge mastery than the vanilla model.
The previous results supported the proposal of a framework for ranking BKT models based
on their capacity to predict student performance, estimate knowledge mastery, and model
efficient learning paths. This framework identified the most effective BKT models, offering
a systematic approach to selecting models that outperformed the vanilla BKT model.

Keywords:
Bayesian knowledge tracing, student modelling, educational data mining, intelligent tutoring
systems
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Prilagodljivo formativno vrednovanje temeljeno na poboljšanom modelu
Bayesovog praćenja znanja

Sažetak:

Ne temelju prethodnih poboljšanja osnovnog Bayesovog modela za praćenje znanja učenika
(eng. Bayesian Knowledge Tracing, BKT), u radu se istražuju BKT modeli za prilagodljivu
procjenu znanja, proširujući pritom standardne funkcionalnosti sustava za e-učenje. Postavl-
jena je hipoteza da uvod̄enje značajki vremena provedenog na pitanju i broja evaluacija koda
u području početnog programiranja poboljšava prediktivnu točnost učenikovih odgovora te
procjenu razine usvojenog znanja. Empirijsko istraživanje provedeno je korištenjem in situ
kvazi-eksperimentalnog dizajna tijekom kolegija Uvod u programiranje u kojem je sudjelo-
valo 174 studenta prijediplomskog studija. Tjedni nastavni sadržaji strukturirani su u granu-
larne komponente znanja (eng. Domain Knowledge Components, DKC) uz pripadajuća for-
mativna vrednovanja (eng. Controlled Environment assessments, CE). Korištenjem pyBKT
Python biblioteke za kognitivno modeliranje, istraženo je 18 BKT modela koji uključuju
različite kombinacije parametara predznanja (eng. Prior), pogad̄anja (eng. Guess), sluča-
jne pogreške (eng. Slip), učenja (eng. Learn) i zaboravljanja (eng. Forgets). Predloženi
BKT modeli nadmašili su osnovni model u predvid̄anju uspjeha učenika u više DKC-ova.
Takod̄er, nadmašili su osnovni model u procjeni razine usvojenog znanja. U kontekstu kon-
vergencije modela, predloženi BKT modeli pružili su učinkovitije i pouzdanije modeliranje
individualnih pristupa učenju. Rezultati istraživanja rezultirali su prijedlogom okvira za ran-
giranje BKT modela s obzirom na njihovu sposobnost predvid̄anja učenikovih odgovora,
procjene razine usvojenog znanja i modeliranje individualnih pristupa učenju. Predloženi
okvir identificirao je najučinkovitije BKT modele, nudeći sustavan pristup odabiru modela
koji nadmašuju rezultate osnovnog BKT modela.

Ključne riječi:
Bayesov model praćenja znanja, modeliranje učenikovog znanja, rudarenje podataka u obra-
zovanju, inteligentni tutorski sustavi
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1 INTRODUCTION

Educational Data Mining (EDM) is a progressive area of scientific research focused on de-
veloping methodologies for analysing unique data collected from educational environments
to gain deeper insights into students and their learning contexts [7]. While closely related to
Learning Analytics (LA), EDM emphasises automated methods over human interpretation
of data and visualisation [8]. Researchers in EDM employ various techniques, including
data mining to identify patterns, machine learning to glean insights from training data and
predict future outcomes, and statistical analysis to quantify data from samples and estimate
population behaviour. A key moment in the evolution of the EDM field was the publication
by Corbett and Anderson on the Bayesian Knowledge Tracing (BKT) model [8, 9], which
marked the first significant milestone.

Although educational data is not exclusively sourced from digital platforms, e-learning
systems represent a broad testing ground. Commonly referred to as Learning Management
Systems (LMS) [10], these systems are designed to manage, document, track, report, au-
tomate, and deliver courses, materials and learning experiences. However, the scope of
e-learning systems extends beyond LMS, encompassing any educational system that em-
ploys formalised teaching supplemented by electronic resources such as computers and the
Internet. Additionally, another significant application of e-learning systems is the delivery of
Massive Open Online Courses (MOOC). Despite their widespread use, neither educational
environment was originally designed to provide adaptive and intelligent functionalities.

Since the 1960s, researchers in the interdisciplinary field of cognitive science, artifi-
cial intelligence, and educational technology have computerised teaching and learning by
developing various types of adaptive educational environments, e.g. Computer Assisted In-
struction (CAI) systems [11], Intelligent Tutoring Systems (ITS) [12], Intelligent Learning
Environments (ILE) [13], Adaptive Instructional Systems (AIS) [14], etc. One of the pri-
mary strengths of these environments is their ability to track and analyse student knowledge
and behaviour, thereby enabling them to identify each student’s individual needs. The effec-
tiveness of other components within these platforms heavily depends on the student model’s
capacity to represent student knowledge accurately. The extensive research conducted in the
field of ITSs over the past few decades represents a valuable resource, showcasing various
approaches to student modelling. While the precise taxonomy of these approaches remains
a subject of ongoing debate, Machine Learning (ML) techniques have gradually emerged as
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the cornerstone for categorising student modelling approaches [1].
According to previous review studies on student modelling [15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 1, 26, 27], one of the earliest and most extensively investigated ML approaches is
the BKT model [9]. This model, founded on Hidden Markov Models, exemplifies the current
state of the art in the field. A significant advantage of the BKT approach is its flexibility in
accommodating the limited data sets often encountered in typical class sizes.

The vanilla BKT model refers to the original and basic version of the model that emerged
from the development efforts of the ACT Programming Tutor and the cognitive theory re-
ferred to as ACT-R (Adaptive Control of Thought–Rational) [28]. According to the ACT-R
theory, mastering a complex skill requires the mastery of its individual components. The
vanilla BKT model also adopts Bayesian computation principles from Atkinson’s work [29].
It conceptualises the student’s knowledge mastery as a latent variable using the Hidden
Markov Model (HMM) as a specific type of Bayesian network. The HMM has nodes rep-
resenting knowledge states (learned or unlearned) and performance states (correct or in-
correct). Transitions between these nodes are determined by probability parameters—such
as prior knowledge, guessing, slipping, and learning—specified by experts for each skill.
Specifically, the transition from a learned to an unlearned state is absent in the vanilla BKT
model, aligning with the “no forgetting” paradigm. Additionally, the model considers in-
dependent knowledge components, comprising sets of questions that are of equal difficulty.
This approach also accommodates a student’s initial attempts, allowing for multiple tries at
answering a question.

Since its introduction, researchers have explored numerous enhancements to the vanilla
BKT model. These enhancements have been evaluated based on architectural features, edu-
cational context, and extensions not accounted for in the vanilla BKT model. The most exten-
sively investigated enhancements include student characteristics and tutor interventions [1].
Typically, researchers have explored the application of BKT within educational settings such
as ITS, which incorporate both instructional and assessment components. However, the use
of BKT in MOOC or simulated environments has been comparatively rare. Enhanced BKT
models have primarily been evaluated based on their predictive capabilities regarding the
accuracy of students’ answers. In contrast, only a limited number of studies have focused on
their effectiveness in estimating knowledge mastery [30, 31, 32, 33, 34, 35]. Enhanced BKT
models have been extensively studied in mathematics education, while comparatively fewer
approaches have been applied in programming and language learning contexts.

In the programming domain, the educational environment explored in the vanilla BKT
research was centred around the ACT Programming Tutor, which facilitated the practice of
short programs in languages such as Lisp, Prolog, and Pascal. González-Brenes et al. [36]
introduced the Feature-aware Student Knowledge Tracing method and proposed an enhanced
BKT architecture, which incorporates performance node features such as subskills, item dif-
ficulty, and the number of answer opportunities. Similarly, Khajah et al. [37] investigated the
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QuizJET Java Programming Tutor and proposed a model enhanced by the Item Response
Theory, which enabled the modelling of various student abilities and problem difficulties.
Huang et al. [38, 39] used the SQL-KNOT and JavaGuide platforms to investigate skill com-
binations that might involve additional specific knowledge. Wang et al. [40] employed a
platform for teaching the C programming language and introduced an enhanced model that
integrates the 2PL Item Response Theory, which estimates students’ prior knowledge and
combines it with the discrimination and difficulty levels of each assessed skill.

Since the 1960s, the Association for Computing Machinery (ACM) and the wider com-
munity have collaborated to formulate standards and guidelines for Computer Science (CS)
curricula [41, 42]. Their recent work on the curricular guidelines for the upcoming decade
resulted in the initial draft of the Future of CS educational materials [42]. In light of pre-
vailing trends, educators, administrators, authors, and practitioners have highlighted the sig-
nificance of educational environments such as ITS and LMS and the system’s capacity for
auto-graded assessment. They have acknowledged the pioneering role of CS education in
creating interactive learning content, which includes algorithm animations and program vi-
sualisations [43], programming problems with auto-grading [44] and ITS [45]. Furthermore,
they have emphasized that utilising a pool of auto-graded questions enables students to en-
gage in regular self-assessment at various stages of the learning process—when they en-
counter new information (e.g. through reading), apply it (e.g. by completing homework
or in-class activities), and review it (e.g. during summative assessments). The objective is
to minimise the gap between students’ willingness to practice and their actual ability to do
so, thereby enhancing the efficiency of each learning hour spent on a task [42]. Overall,
auto-grading increases the adaptability of educational platforms by reducing the number of
questions assigned to students who answer correctly.

Pelánek [46] presented an overview of the terminology typically used in the literature
to define three levels of adaptivity prevalent in educational environments. The first level
pertains to adaptation within a single item (also referred to as a task, problem, or question),
which typically entails tailoring various types of learning support—such as hints, scaffold-
ings, feedback, and explanations—to meet students’ individual needs. In the literature, this
level is also known as the inner loop [47], micro-adaptation [48], or step loop [49]. The
second level involves adaptation within broader instructional steps, such as selecting or rec-
ommending exercises and topics for study. This level is also known as the outer loop [47],
macro-adaptation [48], or task loop [49]. The third level involves adapting the educational
system itself, such as adding or removing items or modifying algorithmic settings, with the
adaptation process being either automated or supervised by a human. This level is commonly
known as the design loop [49], closing-the-loop [50] or human-in-the-loop [23]. This thesis
investigates assessment as a dynamic and personalised approach to evaluating a student’s
knowledge, aligning with the first adaptivity level. In the educational setting, assessments
serve multiple purposes, including feedback, fostering learning through practical application
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and acting as external motivators [42]. Research has indicated that frequent assessments can
improve student performance and alleviate test anxiety [51, 42, 52], as well as allow students
to retake exams if they have not fully mastered the material [42, 53, 54, 55]. Formative as-
sessment primarily targets student learning, focusing on three key components: productive
time spent on tasks, feedback, and spaced repetition [42].

The primary motivation behind this thesis is to enhance the BKT model for the adaptive
assessment of student knowledge. Although this functionality is typically a key feature of
student modelling in adaptive educational systems such as ITSs, the approach here extends
beyond the standard functionalities of LMSs. The approach focuses on formative assess-
ments, utilizing auto-graded tasks to allow teachers to determine the minimum time and
number of questions required to achieve knowledge mastery. The flexibility of BKT, espe-
cially in managing the limited data sets typical of standard class sizes, represents a signifi-
cant advantage, particularly in larger-scale educational environments where time efficiency
is critical. The empirical research employed an in situ quasi-experimental design within an
introductory programming course involving a sample of 174 students. To ensure the ac-
quisition of the fine-grained domain knowledge required for applying the BKT model, the
approach was designed around formative assessments aligned with weekly course topics. In
addition to the time spent on each programming question, the approach considers how often a
student checks the question’s correctness using pre-defined test cases. By classifying student
answers based on these features, a more targeted assessment framework that defines specific
BKT parameter probabilities tailored to the context of this research is proposed. Enhanced
BKT modelling was prioritized for adaptive assessment of student knowledge, with mini-
mized influence from other factors by using questions of equal difficulty and randomising
question sequences.

1.1 Research hypotheses

In response to the identified motivational challenges, this thesis aims to explore the enhanced
BKT modelling for adaptive assessment. Accordingly, it addresses two primary hypotheses:

Hypothesis 1

It is feasible to trace student knowledge using Bayesian modelling and leveraging the time
spent on task and the number of code evaluations.

The proposed hypothesis is investigated through a series of research tasks, including data
collection, data pre-processing, BKT parameter fitting, and evaluation of the BKT models.

4



Chapter 1: INTRODUCTION

Hypothesis 2

Extending the modeling of student knowledge with features such as the time spent on task
and the number of code evaluations enhances the vanilla BKT model.

This thesis presents the framework for the BKT model ranking based on its effectiveness
in predicting student performance and accurately estimating knowledge mastery.

1.2 Dissertation outline

This doctoral thesis comprises six chapters. Chapter 1 introduces the research motivation
and outlines the study’s hypotheses. Chapter 2 presents an overview of the theoretical foun-
dations of the vanilla BKT model and systematically reviews its enhancements.

Chapter 3 describes the research methodology in detail, encompassing data collection,
data preprocessing, BKT parameter fitting and BKT model evaluation. It also outlines
the methodological instruments employed to address the research hypotheses. Chapter 4
presents and discusses the results, including an analysis of formative assessment data, clas-
sification of student answers based on time on task and the number of code evaluations,
BKT model parameters, student performance predictions, knowledge mastery estimations
and student learning paths. This chapter also ranks the examined BKT models and provides
a general discussion of the findings. Chapter 5 demonstrates the BKT-based adaptive forma-
tive assessment by detailing the BKT Quiz Report prototype module, BKT API, BKT Quiz
prototype module and the experimental guidelines.

Finally, Chapter 6 concludes the thesis by summarizing the findings, emphasizing the
scientific contributions and discussing potential directions for future research.
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2 RELATED WORK

This chapter draws extensively from the systematic review of enhanced BKT modelling ap-
proaches [1]. Section 2.1 reviews previous studies on student modelling, while Section 2.2
presents a brief theoretical overview of the BKT model. Finally, Section 2.3 details a system-
atic review of enhanced BKT modelling approaches, employing the PRISMA methodology
to rigorously select and analyze relevant studies.

2.1 Student modelling

The aim is to present (i) the application of BKT in the previous review studies on student
modelling, (ii) an overview of ML techniques used for student modelling, and (iii) a compar-
ison of the Bayesian Network-based BKT model with Logistic Regression-based and Neural
Network-based models [1].

The summary of previous literature on student modelling draws from overviews [16,
18, 19, 20, 26], reviews [15, 21, 22, 25, 27, 23] and systematic literature reviews [17, 24].
Table 2.1 provides a comprehensive list of proposed taxonomies of student modelling ap-
proaches in descending chronological order, including references, research focus and the
proposed taxonomy. The BKT-related student modelling approaches are indicated in italics.

Previous research on student modelling approaches primarily originated within the ITS
and adaptive instruction research communities. Acknowledgement is given to the extensive
body of work in cognitive diagnostic modelling and psychometrics stemming from other
research fields, including Item Response Theory, the DINA model family and related frame-
works [56]. However, these approaches are not included in the present review of ML meth-
ods for student modelling.

Each study in Table 2.1 provides an overview of student modelling approaches related to
specific educational platforms, adaptive behaviour and techniques used. In the early reviews,
ML techniques were already the basis for different student modelling approaches. Over time,
new techniques complemented the previous student modelling taxonomies. However, the
new taxonomies of student modelling approaches are still adopted, and there is no consensus
on the correct taxonomy.

As the subfield of artificial intelligence, ML works on algorithms that enable machines
to learn through experience and data [57]. ML techniques used for student modelling en-
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Table 2.1. Proposed taxonomies of student modelling approaches [1].

Table 2.2. ML techniques identified in the research on student modelling [1].

hance the adaptiveness and intelligence of educational platforms. Those identified in the
already mentioned research studies include Bayesian Networks, Logistic Regression, Neural
Networks, Support Vector Machines, Fuzzy Logic, and Matrix Factorization (Table 2.2).

Moreover, Liu et al. [21] classified the student modelling approaches as Probabilistic,
Logistic, and Deep Learning-based models. Probabilistic models, such as BKT, are based on
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Bayesian Networks and assume that the learning process follows a Markov process, which
uses the observed states to estimate the student’s hidden knowledge states. Logistic models,
such as Learning Factor Analysis [58] and Performance Factor Analysis [59], predict the
probability of student performance by learning function, typically a logistic function. The
last group of knowledge tracing approaches are Deep Learning models based on Neural
Networks [60]. The shortest high-level classification of student modelling approaches is
supported, though it presents some inconsistency, as logistic models may also be considered
probabilistic.

Ramirez Luelmo et al. [24] investigated ML techniques employed in student modelling
from 2015 to 2020. Their research results indicate the most common ML techniques as BKT
(18 applications), Deep Knowledge Tracing (13 app.), Long-Short Term Neural Networks
(12 app.), Bayesian Networks (11 app.), Support Vector Machines (7 app.), Dynamic Key-
Value Memory Networks (7 app.), and Performance Factor Analysis (6 app.).

Overall, Bayesian Networks are the continuously investigated ML technique used for
student modelling. The vanilla BKT based on the Hidden Markov Model is the most repre-
sentative and unique student modelling approach researchers consider a baseline.

As for the preference between the probabilistic Bayesian Network-based and Logistic
Regression-based models, researchers often prefer one model but provide no rationale behind
their choices [23]. On the other side, the apparent accuracy improvement of Deep Learning-
based models over BKT was due to the high dimensional hidden space and ability to observe
interleaved skills in a single model [61]. The comparison between Neural Network-based
research and the vanilla BKT model revealed that simply enabling the forgetting parame-
ter of the vanilla model led to a performance close to Deep Knowledge Tracing on several
datasets [62, 63]. Based on Bayesian statistics, the BKT model assumes nodes with binary
states and is more interpretable than the Neural Network-based model.

2.2 Bayesian Knowledge Tracing (BKT) model

A Bayesian Network is a probabilistic graphical model for representing knowledge about
an uncertain domain, where each node represents a random variable and directed edges be-
tween nodes indicate probabilistic dependencies between these variables. A Hidden Markov
Model (HMM) is a special Bayesian Network for tracing not directly observable (hidden)
nodes using the observable node states. In BKT, hidden nodes represent student knowledge,
and observable nodes represent student performance. Both nodes are assumed to be binary,
including the unlearned and learned knowledge states and the correct and incorrect perfor-
mance states.

Figure 2.1 (based on Zhang and Yao [1, 2]) shows the hidden student knowledget , t ∈
{1,2, ...T} and observable student per f ormancetnodes, t ∈ {1,2, ...T} of the vanilla HMM.
While P(L0) is the initial probability of knowledge before any opportunity to apply it (Prior),
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Figure 2.1. The vanilla BKT model and its instantiation process - based on Zhang and
Yao [2, 1].

Figure 2.2. BKT parameters in a matrix form [3].

there are also transition and emission probabilities. The transition probabilities refer to the
probability P(T) of knowledge transitioning from an unlearned state to a learned state (Learn)
and to the probability P(F) of forgetting a previously known knowledge, which is assumed
to equal zero in the vanilla model (Forgets). The model defines emission probabilities by
guessing the probability of correctly answering unlearned knowledge P(G) (Guess) and the
slip probability of making a mistake when answering a learned knowledge P(S) (Slip). Fig-
ure 2.2 shows the complete set of vanilla model parameters consisting of Prior P(L0), Learn
P(T), Guess P(G), and Slip P(S) in a matrix form.

The main task of the vanilla model is to estimate the probability that a student has mas-
tered the knowledge at time step t, denoted by a learning parameter P(Lt), t ≥ 0. The model
updates the probability P(Lt) after each opportunity to apply knowledge given an observed
correct or incorrect response as follows:

P(Lt−1|Correctt) =
P(Lt−1)(1−P(S))

P(Lt−1)(1−P(S))+(1−P(Lt−1))P(G)

P(Lt−1|Incorrectt) =
P(Lt−1)P(S)

P(Lt−1)P(S)+(1−P(Lt−1))(1−P(G))

If evidencet ∈ {Correctt , Incorrectt} represents the observable correctness of a student’s
answer after an opportunity t to apply knowledge, the updated probability for the following
time step is defined as:
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P(Lt) = P(Lt−1|evidencet)+(1−P(Lt−1|evidencet))P(T )

Using the evidence from the current step, the model first calculates the probability that
the student knew the answer before making an attempt. Then, taking this into account, it
computes the likelihood that the student learned it after making the attempt. The previous
equations are based on the original BKT publication [9], and a similar notation appears in
the work by Zhang and Yao [2].

Regarding the BKT parameter estimation procedure, Corbett and Anderson [9] discussed
individualisation per skill and individualisation per student of all four BKT parameters. The
individualised BKT model resulted in a better correlation between actual and expected ac-
curacy across student results than the non-individualized BKT model, whose accuracy of
predicting student test scores (after working with a tutoring system) did not improve tan-
gibly [3]. Finally, the vanilla model’s parameter fitting procedure involves expert-based
estimations of the four BKT parameters per skill.

2.3 Systematic review of enhanced BKT modelling

This work differs from other literature reviews on several accounts since it focuses on the
probabilistic BKT models, systematically covers the research works published since the in-
troduction of BKT in 1995 up to the most recent research in 2022, and reviews the BKT
enhancements and evaluation approaches, including datasets from educational platforms and
the performance measures found in the literature. It is built upon the framework of ITS and
the vanilla BKT model, which is recognized as one of the first ML and most representative
approaches. We aim to discuss two Research Questions (RQ):
RQ1: What has been proposed in the literature to enhance the vanilla BKT model since its
emergence in 1995?
RQ2: Which evaluation approaches, including data collected from educational platforms and
performance measures, were part of the research on the BKT enhancements?

2.3.1 Methodology

The methodology used in this work is in line with the PRISMA guidelines [64] consisting of
(i) Rationale, objectives and research questions, (ii) Eligibility criteria, information sources,
and a search strategy, (iii) Screening process and study selection and (iv) Data collection and
features. Since we have elaborated on the rationale and objectives in the previous sections,
we proceed with the criteria, sources, and search strategy for works that fall under the scope
of this review.

The main eligibility criterion referred to scientific works on the vanilla BKT model en-
hancements published in the relevant scientific databases until 2022. The implementations
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Table 2.3. Database search details [1].

of the BKT enhancements could proceed in two directions, including the Bayesian network
architecture/educational context and new computational methods.

We searched the scientific databases indexing quality-proven journals and conference
proceedings, including the Web of Science (Core Collection), Scopus, ACM (Full-Text Col-
lection), IEEE Xplore, and Google Scholar (the final refinements made in March 2023).
The search strategy included the expression knowledge tracing and versions of Bayes and
probabilistic words contained in the publication abstracts. Due to the extensiveness of the
Google Scholar database, we searched the publication titles using the expression Bayesian
knowledge tracing. Table 2.3 shows the search details with the number of publications.

Figure 2.3 shows the PRISMA flow diagram of the publication identification and screen-
ing process, a widely accepted method for conducting systematic reviews. It visually rep-
resents the steps taken to identify and screen publications, ensuring transparency and repro-
ducibility in the review process.

Out of 409 results from the five academic databases, we compiled 223 publications (177
duplicates and nine conference proceedings removed).

The screening of abstracts resulted in 84 excluded publications, which were off-topic and
written in languages other than English or as a programming code.

In the second phase of screening 139 full-text manuscripts, we excluded 83 publications
due to the eligibility criteria, not retrieval, or the language other than English.

The full-text reading phase included the remaining 56 publications in which we found 17
references and cited in this review. Those publications were part of specific events (e.g. [65])
presented at the 21st Annual meeting of the American Association for Artificial Intelligence),
conferences not indexed in scientific databases for the given year (e.g. International Con-
ference on Educational Data Mining in 2014) or works indexed using different keywords
(e.g. [66]). Finally, this systematic review includes 73 publications and the original BKT
publication.

To get a closer insight into the publications included in the review, we provided the yearly
heatmap of the most frequent sources of BKT research in Table 2.4, in which ‘Other’ denotes
sources that contributed to the review study with a single publication. The most common
sources were scientific conferences, including the International Conference on Educational
Data Mining (EDM), the International Conference of Intelligent Tutoring Systems (ITS),
the International Conference of Artificial Intelligence in Education (AIED), the International
Conference on User Modelling, Adaptation, and Personalization (UMAP), ACM Conference
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Figure 2.3. PRISMA flow diagram of the publication identification and screening
process [1].

Table 2.4. Heatmap of the most frequent publication sources in the research of BKT
enhancements [1].

on Learning at Scale (L@S), International Conference on Learning Analytics & Knowledge
(LA&K), IEEE Conference on Big Data (IEEE BigData) and the User Modelling and User-
Adapted Interaction (UMUAI) Journal. There was an increase in publications in 2008, 2010,
and between 2013 and 2018.

To address RQ1 and elaborate on various enhancements of the BKT, we found the vanilla
model assumptions to be appropriate review criteria. The vanilla assumptions derive from
the architectural and educational context-based properties of the vanilla BKT model pro-
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posed by Corbett and Anderson in 1995 [9]. The architectural properties refer to the Hidden
Markov model elements, including the nodes with corresponding states and the relationships
between nodes (assumptions A01-A07 in the following text). The educational context-based
properties include the vanilla assumptions on the knowledge component dependence, ques-
tion difficulty and answer attempts (A08-A10).

The theory of knowledge inference in the vanilla model consists of the knowledge node
with the binary learned and unlearned state (A01) and the performance node with the binary
correct and incorrect state (A02). The prior knowledge, guessing, slipping, and learning
parameters refer to expert-based probabilities estimated per skill (A03-A06). The model
follows the no-forgetting paradigm by omitting the transition from learned to unlearned state
(A07). The independent knowledge components (A08) refer to equally difficult questions
used during the knowledge inference process (A09). Although a student may have multiple
attempts to answer the question in the educational platform, the vanilla model counts only
the first attempt (A10).

To address RQ1, we reviewed the computational methods used in the enhanced BKT
models and architectural and educational context-based enhancements.

Regarding RQ2, each publication that proposed enhancements evaluated the approaches
using datasets from specific educational platforms. Although the diversity and specificity
of these studies did not allow a direct comparison of the reported results, this review study
provides more insights into the evaluation approaches.

2.3.2 Results

This systematic overview of BKT enhancement aspects encompassed the identified research
studies, which resulted in 62 enhanced BKT models. We noted some publications as mul-
tiple sources of the single enhanced BKT model (e.g. [67, 65]). For more than one source
publication per model, we considered the year of the earlier publication as a model source
year.

While some BKT models addressed the architectural and educational context-based prop-
erties of the vanilla BKT model (A01-A10), some enhancements extended its characteristics.
Both types of enhancement aspects could also propose new computational methods. There-
fore, we found it important to analyse architectural and educational context-based enhance-
ments and computational methods separately.

The review of architectural and educational context-based properties, the overview of
computational methods generally used for parameter estimation, and the evaluation ap-
proaches of enhanced BKT models are presented in the following subsections.
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Table 2.5. Enhancement criteria used to review BKT models [1].

Table 2.6. The heatmap of the research on BKT enhancements [1].

The architectural and context-based enhancements

To review the enhanced BKT models, we proposed the enhancement criteria in line with
the vanilla BKT model assumptions. The enhancement criteria resulted from an iterative
analysis of the identified research studies and represented a unique way of classifying the
BKT enhancements. Besides those criteria found in the vanilla BKT model (enhancement
aspects EA01-EA10 in Table 2.5), some enhancements extended the vanilla BKT model
with new aspects. Additional vanilla BKT enhancement aspects included Student character-
istics (EA11), Tutor interventions (EA12), and Noise in data (EA13). Table 2.5 shows the
complete list of BKT enhancements and the related vanilla model assumptions.

Although each change in the Bayesian network architecture directly implied the update
of BKT parameters, EA03-EA06 criteria encompassed BKT models focusing on the prior
knowledge, guessing, slipping and learning BKT parameters, e.g. Contextual Guess and
Slip method [68]. A yearly heatmap (Table 2.6) reviews BKT enhancements. The sum-
marizations per year are presented in the last table row and per each enhancement in the
last table column. Overall, fifty-four enhanced BKT models addressed 101 architectural and
educational context-based properties of the vanilla BKT model.

The first enhanced BKT model emerged in 2004, a decade after the vanilla model. There
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Table 2.7. The variations of investigated BKT enhancements [1].

was a decrease in the research after 2018, probably due to the COVID-19 pandemic. Much
research work focused on enhancements to the vanilla model as Student characteristics (20
research studies), Domain knowledge properties (12 research studies), Tutor interventions
(10 research studies), and Question difficulty (9 research studies). The most investigated
enhancements extended the vanilla BKT model, precisely Student characteristics and Tutor
interventions. The most investigated educational context-based enhancements referred to
Domain knowledge properties and Question difficulty, while the most frequently investigated
architectural enhancement included Prior knowledge.

Since each examined research study could enhance one or more of the proposed crite-
ria, we analysed the most frequent variations of the investigated BKT enhancements. It is
worth noting that a single criterion represents the most straightforward enhancement varia-
tion. The results are presented in Table 2.7, and variations found in a single research study
are summarised as ‘Other’.

The results indicate that the single criteria of Student characteristics, Prior knowledge,
and Domain knowledge properties were the most frequently investigated among 31 enhance-
ment variations. The most frequent combination of enhancements found in 3 research stud-
ies included Guessing, Slipping, Student characteristics and Tutor intervention criteria. Ta-
ble 2.8 shows the research related to each BKT Enhancement Aspect (EA).
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Table 2.8. Enhanced BKT models per proposed Enhanced Aspect (EA) [1].

BKT EA BKT models
EA01 Halpern et al., 2018 [69]; F. Liu et al., 2021 [70]; Schodde et al., 2017 [34]; Yudelson et al., 2008 [35];

Zhang & Yao, 2018 [2]

EA02 David et al., 2016 [71]; F. Liu et al., 2021 [70]; Ostrow et al., 2015 [72]; Y. Wang et al., 2010 [73]; Y. Wang
& Heffernan, 2013 [74]; Z. Wang et al., 2016 [75]; Yudelson et al., 2008 [35]

EA03 Eagle, Corbett, Stamper, McLaren, Baker, et al., 2016 [76]; Eagle, Corbett, Stamper, McLaren, Wagner, et
al., 2016 [77]; Eagle et al., 2017 [78]; Nedungadi & Remya, 2014 [79], 2015 [80]; Pardos & Heffernan,
2010 [81]; Song et al., 2015 [82]; S. Wang et al., 2017 [83]; Xu & Mostow, 2013 [84]; Yudelson et al.,
2013 [3]

EA04 Agarwal et al., 2018 [85]; Baker et al., 2008a [66], 2008b [68], 2010 [30]; Pardos & Heffernan, 2011 [86];
Zhou et al., 2017 [87]

EA05 Agarwal et al., 2018 [85]; Baker et al., 2008a [66], 2008b [68], 2010 [30]; Pardos & Heffernan, 2011 [86];
Qiu et al., 2011 [88]; Zhou et al., 2017 [87]

EA06 Adjei et al., 2013 [89]; Baker et al., 2018 [90]; Sao Pedro et al., 2013 [91]; Yudelson et al., 2013 [3]

EA07 Beck et al., 2008 [67]; Chang et al., 2006 [65]; Halpern et al., 2018 [69]; Khajah et al., 2016 [63]; Nedungadi
& Remya, 2015 [80]; Qiu et al., 2011 [88]; Yudelson et al., 2008 [35]

EA08 Chan et al., 2022 [92]; González-Brenes et al., 2014 [36]; Hawkins & Heffernan, 2014 [93]; Huang et al.,
2016 [38]; Huang & Brusilovsky, 2016 [94]; Khajah et al., 2016 [63]; MacHardy, 2013 [95]; MacHardy &
Pardos, 2015 [96]; Meng et al., 2019 [97]; Sao Pedro et al., 2013 [91]; Sun et al., 2022 [98]; Z. Wang et al.,
2016 [75]

EA09 Baker et al., 2018 [90]; David et al., 2016 [71]; González-Brenes et al., 2014 [36]; Khajah, Huang, et al.,
2014 [99]; Khajah, Wing, et al., 2014 [37]; Ostrow et al., 2015 [72]; Pardos et al., 2013 [100]; Pardos &
Heffernan, 2011 [86]; Zhou et al., 2017 [87]

EA10 Bhatt et al., 2020 [101]; González-Brenes et al., 2014 [36]; Pardos et al., 2013 [100]; Yudelson et al.,
2008 [35]

EA11 Agarwal et al., 2018 [85]; Baker et al., 2008a [66], 2008b [90], 2010 [30]; Corrigan et al., 2015 [102];
Eagle et al., 2018 [103]; Gorgun & Bulut, 2022 [104]; Halpern et al., 2018 [69]; Khajah et al., 2016 [63];
Khajah, Huang, et al., 2014 [99]; Khajah, Wing, et al., 2014 [37]; Lee & Brunskill, 2012 [105]; Lin et al.,
2016 [32]; Lin & Chi, 2016 [33]; Nedungadi & Remya, 2014 [79]; Pardos et al., 2012 [106]; Rau & Pardos,
2016 [107]; Spaulding et al., 2016 [108]; Y. Wang & Heffernan, 2012 [109]; Xu et al., 2013 [84]; Yudelson
et al., 2008 [35]

EA12 Agarwal et al., 2018 [85]; Baker et al., 2008a [66], 2008b [68], 2010 [30]; Beck et al., 2008 [67]; Chang
et al., 2006 [65]; Lin et al., 2016 [32]; Lin & Chi, 2016 [33]; Ostrow et al., 2015 [72]; Rau & Pardos,
2016 [107]; Schodde et al., 2017 [34]; Y. Wang et al., 2010 [73]; Y. Wang & Heffernan, 2013 [74]; Yudelson
et al., 2008 [35]

EA13 Beck & Sison, 2004 [31]; Falakmasir et al., 2015 [110]; Gorgun & Bulut, 2022 [104]

Computational methods

Computational methods used in the proposed BKT approaches generally referred to the es-
timation of BKT parameters. Some models did not have to interfere with the vanilla model
assumptions but primarily addressed the computational challenges, e.g., the Dirichlet priors
method [111, 112]. Overall, 56 enhanced BKT models reported the use of computational
methods.

Table 2.9 presents the results of reviewing computational methods for researching BKT
enhancements with over two applications.
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Table 2.9. Computational methods used in the research of BKT enhancements [1].

Computational methods enhanced the skill-based estimations of BKT parameters used
in the vanilla model. The Expectation-Maximization method, first used in 2006, practi-
cally became the standard (24 research studies). The other computational methods included
the Monte Carlo method (5 research studies), the Brute force method (4 research studies),
K-means clustering (4 research studies), the Contextual Guess and Slip method (3 research
studies), and the Knowledge Heuristics with Empirical Probabilities method (3 research stud-
ies).

Evaluation approaches

Concerning the evaluation approaches, we reviewed educational platforms and performance
measures used in researching BKT enhancements. Table 2.10 shows a yearly heatmap of
the educational platforms used in the reviewed publications (Other denotes platforms with a
single application).

Table 2.10. The datasets collected from educational platforms and used in the BKT
research [1].

Besides ITSs, we found the application of the BKT model enhancements in Massive
Open Online Courses (MOOCs), game-based platforms, and online learning platforms in
human resources training. The research on the BKT enhancements typically included the
Cognitive Tutor (19 research studies) and the ASSISTments (19 research studies). Other ed-
ucational platforms with over two applications were MOOCs (5 research studies) and simu-
lated datasets (7 research studies). The MOOC environments included edX, Coursera, Khan
Academy and Junyi Academy.

As for the domain, the examined datasets related to Math (38 research studies), Language
learning and Programming (per 7 research studies), Genetics, Physics and Engineering (per
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Table 2.11. Performance measures used in the research of BKT enhancements [1].

3 research studies), Science (per 2 research studies), and Medicine and Chemistry (per single
research study).

Regarding the performance measures used, Table 2.11 shows the most frequent measures
in the research of BKT enhancements with over two applications.

The most frequently used performance measures included the RMSE measure (Root
Mean Square Error, 28 research studies), the AUC (Area Under Curve, Receiver Operat-
ing Characteristics curve, 23 research studies) and the Accuracy measure (20 research stud-
ies). These performance measures are frequently used metrics for classification tasks in the
machine learning field.
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3 METHODOLOGY

The thesis encompassed several tasks to investigate the proposed hypotheses (Figure 3.1).
Initially, data was collected within an authentic educational setting (in situ) for each for-
mative assessment, student and question. In addition to capturing the binary correctness of
student answers, data on time spent on the tasks and the number of code evaluations was
extracted. This process resulted in the Initial BKT report, which included Quiz ID, Student
ID, Question ID, Student Performance, Time on Task (sec), Cumulative time (sec), Response
evals and Cumulative evals.

Next, the Initial BKT report was used to classify student answers into multiple classes.
The classification models complemented the report with features based on time on task
(Multiclasses_time) and a combination of time on task and the number of code evaluations
(Multiclasses_time_evals).

Subsequently, the student-level training subset from the previous output was used to fit
the BKT parameters, including Prior, Guess, Slip, Learn, and Forget. The testing subset
then evaluated the proposed BKT models, addressing Hypothesis 1 on the feasibility of the
approach. Finally, a framework for ranking BKT models was introduced to improve the
vanilla BKT model, addressing Hypothesis 2.

The results of the previously mentioned research tasks facilitated the BKT-based forma-
tive assessment in the widely used Modular Object-Oriented Dynamic Learning Environ-
ment (Moodle) LMS [113] through the development of the BKT Application Programming
Interface (API) and the prototype modules.

Figure 3.1. Research tasks conducted to investigate the hypotheses.

3.1 Data collection

Data collection in educational settings typically involves conducting in situ experiments that
do not disrupt the natural behaviour of students and teachers. Educational interventions
and phenomena are often evaluated using quasi-experimental designs that do not rely on
random assignment. This empirical research employed an in situ experiment conducted
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Table 3.1. The domain knowledge components used in the formative assessments.

in the natural environment of a one-semester undergraduate course, “Introduction to Pro-
gramming in Python”. The course at the Faculty of Science, University of Split, enrolled
174 students, representing a non-random experimental sample. Formative assessment data
collected through the open-source Moodle LMS (version 4.1.5+) [113] was used alongside
student performance on standard summative evaluations, such as midterm and final exams.
Students provided informed consent for their participation in the study, permitting the use of
formative assessment data for research purposes.

The research investigated the granularity of the BKT Domain Knowledge Components
(DKC) associated with that higher education course. A DKC was defined as a concept taught
weekly, with a single week potentially encompassing multiple DKCs, each corresponding to
a question pool that assessed the associated concept. Table 3.1 presents the DKCs examined
in our experiment.

Following the weekly lectures and laboratory exercises, students were expected to master
the knowledge individually. A day before the laboratory exercises, they had a single oppor-
tunity to assess their knowledge through a formative assessment designed for Self-Practice
(SP). Then, a Controlled Environment (CE) formative assessment was conducted at the be-
ginning of the laboratory exercises. SP and CE formative assessments together foster inde-
pendent learning and self-reflection. While SP helps students build problem-solving skills
and autonomy, CE assessments provide feedback that guides both teachers and students in
addressing learning gaps, promoting continuous improvement. This research proposed en-
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Figure 3.2. Research protocol – course timeline.

Figure 3.3. Research protocol – DKC timeline.

hanced BKT modelling of student knowledge based on CE assessments. The collected SP
data was discussed in the context of in situ experiment guidelines.

Each formative assessment comprised 20 questions, all of equal difficulty, and presented
in a randomised order. The duration of the formative tests varied: DKCs 01-07 were allotted
10 minutes, DKCs 08-10 were given 15 minutes, and DKCs 11-25 had a duration of 20
minutes.

Figure 3.2 illustrates the research protocol for the course over 15 weeks (W). During
the initial two weeks, students were asked to provide informed consent. Assessments were
conducted for one or more DKCs taught in the preceding week. The course included typical
summative assessments such as a midterm exam during the 7th week and a final exam at the
end of the semester (15th week). Students participated in an anonymous usability study one
week before the final exam.

Figure 3.3 outlines the weekly research protocol. In addition to two-hour lectures, stu-
dents engaged in two-hour laboratory exercises, with the class divided into five groups (G1-
G5). Each DKC was introduced during the regular lectures and corresponding laboratory
exercises. The following week, students completed SP formative assessments followed by
CE formative assessments.

3.1.1 Formative assessment using Virtual Programming Lab

The questions included in the formative assessments consisted of short programming tasks
presented using Virtual Programming Lab (VPL) activity modules [114]. The core VPL
(version 4.1.1) serves as an activity module type of Moodle extension, facilitating the man-
agement of programming tasks. In contrast, the VPL Question (version 1.7.0) is a specific
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Figure 3.4. The VPL activity creation.

question type within Moodle that incorporates VPL-based tasks into quizzes. To facilitate
student code execution and evaluation within our experimental environment, 6 VPL servers,
each equipped with 2vCPUs and 4GB of RAM were utilized.

Since its emergence in 2012, the use of VPL modules has continuously grown worldwide,
with over 2,000 sites reported in January 2023 [5]. Initial studies indicated that the module
was both flexible and robust, enabling advanced methods for assessing student programming
submissions [115, 116, 117]. Although automatic grading required considerable prepara-
tion time, the process required minimal effort once this phase was complete. Regarding
interpreting increased code evaluations—whether they indicate deeper student engagement
or disengaged behaviour (student clickers)—the VPL functionality that counted new evalu-
ations only when students modified their code was found particularly useful. An example
of configuring a VPL-based question within the Moodle LMS environment is presented in
Figures 3.4- 3.8.

Initially, the teacher created a VPL activity to process questions and define the execution
files (Figure 3.4). Run and evaluation options are set at this point, and the optional test scripts
are added to test student programs. The VPL activities remain available for use by the VPL
questions but are not visible to students in the Moodle course.

Then, a teacher creates a new VPL question in the question bank by configuring general
information, question templates, answer templates, and settings for teacher correction and
evaluation (Figures 3.5- 3.7). At this point, linking the question to the unique VPL activity
is important to ensure the proper count of student code evaluations (Figure 3.5). Besides
question text, the presented test cases reflect additional details to consider when answer-
ing a question. VPL Question Template refers to the linked unique VPL activity, and the
ANSWER placeholder represents the student code to be executed. The Answer Template
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Figure 3.5. The VPL question creation – Question text.

represents the optional code presented to students, and the Teacher Correction presents the
correct answer to be evaluated and presented to students as feedback. Figure 3.7 shows the
test cases to be used during the evaluation.

From a student’s point of view, VPL facilitated the modification and execution of the
provided code and preliminary validation through pre-prepared test cases. While executing
the code allowed for arbitrary input, the pre-check function assessed student programs using
a set of predefined test cases (Figure 3.8).

In 21 out of 25 CE formative assessments, data was collected to fit BKT models. The four
CE assessments (DKC 18 Lists - Basic 22/23, DKC 20 Sorting algorithm, DKC 22 Files -
Basic 22/23, and DKC 24 Files including Lists) were used for testing the Moodle LMS
prototype modules. From the student’s perspective, the latter assessments were designed to
demonstrate the idea of potential time efficiency in adaptive assessment. Following this in-
troduction to adaptive assessment and their overall learning experience, students participated
in the usability study before the final exam.

3.2 Data preprocessing

The data mining methodology in the context of data pre-processing, BKT parameter fitting
and evaluation was implemented using a hosted Jupyter Notebook service (Google Colab)
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Figure 3.6. The VPL question creation – the VPL activity link (Template VPL), answer
template and teacher correction.

Figure 3.7. The VPL question creation – Execution and evaluation.

and Python libraries, including pandas (version 1.4.1), numpy (version 2.0.1), scikit-learn
(version 1.5.1), scipy (version 1.14.0) and pyBKT (version 1.4.1).

In the data pre-processing phase, outliers were identified and removed based on the cu-
mulative time spent on each task. The cumulative time spent on a task was defined as the
duration from the start of the assessment to the moment a student completes a specific ques-
tion. If a student deviated from the standard learning trajectory—such as skipping questions
or using the browser’s back button—the cumulative time might not have aligned with ex-
pected norms. Consequently, any assessment attempts exhibiting a cumulative time that
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Figure 3.8. An example of the VPL-based "complete the given code” question.

significantly diverged from the total assessment duration, exceeding an arbitrary threshold
of 10 seconds, were excluded from the dataset.

An answer opportunity refers to a single question in a formative assessment. During
the pre-processing, instances where not all answer opportunities were completed by students
were designated as incorrect answers. For these instances, the last recorded time spent on
the task and the number of evaluation attempts were retained.

The pre-processed datasets were divided into training (70%) and testing (30%) subsets
to investigate multiple classes of student answers. The classification of student answers
relied on several key features: time spent on the task, cumulative time spent on the task,
the number of student code evaluations, and cumulative code evaluations. Here, time spent
on the task denoted the total seconds allocated to each answer opportunity (question), while
the number of code evaluations referred to the number of code checks using pre-defined test
cases. The cumulative values of these features represented the accumulated time and number
of evaluations from the start of the assessment up to the current question.

The Decision Tree method was employed for student answer classification due to its
high interpretability and widespread application. The default Decision Tree method was
based on the CART (Classification and Regression Trees) algorithm from the scikit-learn
Python library. Information gain and entropy were utilized as the splitting criterion mea-
sures. Based on experimental results indicating the minimal depth required for all examined
DKCs to achieve multiple classes, a maximum tree depth of 5 was established. Standard
performance metrics—AUC, F1, Precision, Recall, and Accuracy—assessed classification
model outcomes.
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Moreover, to validate and evaluate the enhanced BKT models, the pre-processed datasets
were divided into student-level training (70%) and testing (30%) subsets. The student data
was shuffled to ensure that different students appear in the training and testing sets randomly.
However, individual answer opportunities were kept intact and placed entirely in either the
training or testing set based on the subset they belong to.

The BKT models were fitted and cross-validated using the student-level training subset,
while their performance was assessed using the unseen data from the testing subset.

3.3 BKT parameter fitting

Cognitive modelling creates computational simulations of human thought processes to repli-
cate how the brain handles information, decision-making, and problem-solving. These mod-
els provide insights into human behaviour and improve predictions of cognitive functions.
The pyBKT is an open-source, accessible and computationally efficient Python library for
cognitive modelling [62]. It encompasses the BKT model and its potential variants, provid-
ing a means of estimating students’ cognitive mastery from sequences of problem-solving
activities. Experiments conducted with the library examined the accuracy of synthetic model
fitting. The results indicated that increasing the number of students had a greater impact on
reducing fit error than extending the length of the task sequences assigned to students. A
sample size of 50 was found to be sufficient for achieving convergence to canonical param-
eter values, regardless of the average sequence length per student. Additionally, a sequence
length of 15 was found sufficient for minimizing inaccuracies in worst-case mastery estima-
tion [62].

PyBKT was utilized to fit, cross-validate and evaluate proposed BKT models. It incorpo-
rated the widely used Expectation-Maximization (EM) method for model fitting. Although
this method has practically become the standard in the field, increased research interest has
highlighted potential challenges. Doroudi and Brunskill [118] identified that the BKT model
was susceptible to the local optima problem under mild conditions on the parameters. Addi-
tionally, it was revealed that the EM method was prone to semantic model degeneracy, which
could render the BKT model inconsistent with its underlying conceptual assumptions [113].
Model degeneracy was characterized by Guess and Slip parameter probabilities exceeding
0.5. The literature suggests limiting the parameter space by bounding these parameters to
a maximum of 0.5 to reduce degeneracy caused by excessive answer opportunities, often
interpreted as under- or over-practice.

Also, using multiple EM algorithm iterations with different initialisations helps to ensure
more robust and stable BKT parameters. Setting numfits pyBKT parameter to a higher value
provides multiple EM initializations enabling the best-fitting parameters less influenced by
the randomness inherent in the EM algorithm.

Using the training data subset, the 18 BKT models were fit for adaptive assessments (Ta-
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Table 3.2. The BKT models for adaptive assessment.

ble 3.2). While the time aspect could be applied to any question type, such as multiple-choice
or essay questions, the number of code evaluations was specific to the Python programming.
Table 3.2 presents the originally defined pyBKT parameters for each BKT model. When the
forgetting mechanism was not enabled, the Forgets parameter was set to zero. The multigs
and multilearn models utilised Class0 and Class1 parameter probabilities. In this research,
‘multi classes’ refers to an assessment environment centred on the binary correctness of stu-
dent answers. In the multiprior models, the Prior parameter probabilities were set to zero,
while different Learn probabilities were defined as Class1, Class2 and Default. Additionally,
Class1 and Class2 represented parameter probabilities related to the binary correctness at
the first answer opportunity, whereas the Default class probabilities applied to subsequent
answer opportunities.

The vanilla model is the baseline BKT model, referred to as #01 vanilla in Table 3.2. The
first enhancement included the addition of the forgetting parameter (#02 vanilla+forgets).
Both models considered a single parameter class based on the correctness of the answer to
model knowledge mastery.

Two groups of BKT models were examined based on the features they considered when
modelling knowledge mastery. In addition to answer correctness, the first group of models
(#03 - #10) incorporated the features of time spent on task and cumulative time. These time-
feature-based models include T tag in the model names. The #03 multigs T model included
different Guess and Slip parameter probabilities (Class0 and Class1), while its enhanced ver-
sion incorporated forgetting (#04 multigs+forgets T). The #05 multilearn T model introduced
different Learn parameter probabilities (Class0 and Class1), with its enhanced version allow-
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ing multi class forgetting (#06 multilearn+forgets T). The #07 multigs+multilearn T model
combined multi class Guess, Slip, and Learn parameter probabilities (Class0 and Class1),
and its enhanced version included multi class forgetting (#08 multigs+multilearn+forgets
T). The #09 multiprior T model defined multi-class Learn parameter probabilities for the
first answer opportunity (Class1 and Class2), interpreting it as a different level of student
pre-knowledge (Prior). The multiprior model also had an enhanced forgetting version (#10
multiprior+forgets T).

The second group of enhanced BKT models (#11 - #18) further considered the number
and cumulative number of code evaluations during classification. The time- and evaluation-
feature-based models include TE tags in the model names. Similar to the previous group,
models #11 multigs TE, #12 multigs+forgets TE, #13 multilearn TE, #14 multilearn+forgets
TE, #15 multigs+multilearn TE, #16 multigs+multilearn+forgets TE, #17 multiprior TE and
#18 multiprior+forgets TE were proposed.

3.4 BKT model evaluation

Finally, the performance of BKT models was assessed in terms of their ability to predict stu-
dent performance and estimate knowledge mastery. The power of the BKT models to predict
student performance was cross-validated using the training subset and evaluated with the
testing subset. The ability to estimate knowledge mastery was analysed using the complete
and the testing subsets. The complete dataset was also used to examine the average and ideal
number of answer opportunities (model convergence).

Standard metrics, including RMSE, AUC, and Accuracy, were used to evaluate predictive
power. The 5-fold cross-validation combined the fitting and evaluation of BKT models,
while the evaluation encompassed unseen data. The nonparametric Wilcoxon Signed Rank
Test was also applied to determine statistically significant differences between the baseline
vanilla BKT model and each BKT model across DKCs.

The relationship between adaptive BKT probabilities and student performance in forma-
tive and summative assessments was analysed for knowledge mastery estimation. Formative
assessments referred to complete student answer sequences, while summative assessments
referred to student performance on typical midterm and final exams. These relationships
were measured using a BKT mastery threshold of 0.95, correlation measure, corresponding
p-values of statistical significance, and the F1 score.

The framework for ranking the BKT model relied on composite scores, which were based
on the model’s capacity to predict student performance and estimate knowledge mastery in
a timely manner.

The composite scores included several research metrics presented in the study. RMSE
and AUC metrics were used for prediction, whereas correlation and F1 scores were em-
ployed for formative and summative assessments to assess knowledge mastery. In evaluating
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model performance, the BKT ranking incorporated information on model convergence based
on the learning path, represented as the sequence of binary correctness in student answers
within the assessment. Model convergence was measured by the average number of answer
opportunities across the dataset, as well as the ideal number of answer opportunities needed
to reach knowledge mastery. The ideal learning path, in this context, reflects a scenario
in which a student consistently responds correctly within a motivational framework aligned
with the BKT parameter probabilities.

The aforementioned metrics were normalised using min-max scaling, and for metrics
where lower values are preferable (such as RMSE and answer opportunity metrics), the
values were inverted. Two types of composite scores were reported, including balanced
weights. The first composite score considered data from formative and summative assess-
ments (midterm and final exams), while the second score was based solely on formative
assessment data.

3.5 Methodological instruments

The first hypothesis posited the feasibility of tracing student knowledge through Bayesian
modelling by leveraging the features of time spent on the task and the number of code evalua-
tions. The feasible BKT model is successfully fit and evaluated by considering each research
task’s requirements and potential limitations. In the Data collection task, within specific ex-
perimental settings, the features of time spent on the task and the number of code evaluations
are successfully extracted. The Data pre-processing task ensures the utilisation of appropri-
ate data and the classification of student answers. Subsequent BKT parameter fitting and
model evaluation tasks confirm the feasibility of the BKT model.

Moreover, the extended BKT modelling enhancing the vanilla BKT model was observed
to address the second hypothesis. A framework for BKT model ranking based on the research
results was proposed.

The feasible BKT model that overperforms the vanilla model per each DKC takes into
account the following research results:

• regarding the prediction of student performance: lower and statistically significant
RMSE across DKCs; higher and statistically significant AUC across DKCs

• for the estimation of knowledge mastery: higher and statistically significant Pearson
correlation; higher F1 score

• student learning paths: lower average number of answer opportunities; lower number
of answer opportunities in the ideal student learning path.

The following Results and discussion section systematically addresses each of the pro-
posed hypotheses, presenting findings in a structured manner across successive subsections.
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4 RESULTS AND DISCUSSION

This section presents the research findings, progressively addressing the proposed hypothe-
ses, including the feasibility of tracing student knowledge using enhanced Bayesian mod-
elling and improving the vanilla BKT model performance results. Sections 4.1 through 4.7
provide the data and analysis required to examine the hypotheses. Subsection 4.1 outlines
the data collection, followed by the classification of student answers in subsection 4.2. Sub-
section 4.3 details the fitted BKT model parameters for each DKC, with Subsection 4.4
presenting student performance prediction results, subsection 4.5 covering knowledge mas-
tery estimation and subsection 4.6 focusing on student learning path outcomes. Subsection
4.7 presents the BKT model ranking results. Discussion on the hypotheses is presented in
Subsection 4.8.

4.1 Formative assessment data

Formative assessment data for Self-Practice (SP) and the Controlled Environment (CE) were
analysed for each DKC using descriptive statistics, including central tendency, dispersion
and reliability measures. The mean, Standard Deviation (SD), and median were used to rep-
resent central tendency and dispersion, while reliability was assessed through the Coefficient
of Internal Consistency (CIC), Error Ratio (ER), and Standard Error (SE). Table 4.1 pro-
vides an overview of the dataset, including the number of students, the mean and standard
deviation of percentage scores (0-100%), the median percentage score, and the coefficient of
internal consistency, error ratio, and standard error measures.

Cronbach’s alpha (CIC) was used to assess the consistency of test questions in evaluating
the same concept (DKC). The results are presented on a percentage scale, with values above
75% considered satisfactory. Since each test was designed around a specific DKC, the high
average coefficient of internal consistency value of 93.09% confirmed the reliability of this
approach.

The error ratio, derived from a coefficient of internal consistency, indicates the proportion
of the SD likely attributable to random factors rather than differences in knowledge mastery.
The error ratio values exceeding 50% are considered unsatisfactory. The average error ratio
of 25.47%, with a maximum of 42.64% for DKC 05 (Logic operators & expressions SP),
suggested satisfactory results.
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Table 4.1. Formative test statistics – the central tendency, dispersion and reliability
measures.

The standard error was used to determine the range within which a student’s score would
likely fall on repeated attempts of a similar test. Lower standard error values indicate more
precise tests, though reducing standard error below 5- 6% is challenging. A standard error
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of 8% corresponds to roughly a half-grade difference, with higher values indicating a risk of
misgrading [119]. The results were satisfactory, with an average standard error of 6.98% and
a maximum of 8.40% for DKC 02 (Variables CE).

Furthermore, data distribution was analysed using the Kolmogorov-Smirnov (KS) test
for normality, as well as skewness (SDS) and kurtosis (SDK) (Table 4.2). The Kolmogorov-
Smirnov test statistic (D) was calculated using an online tool [120], while Moodle LMS
provided the skewness and kurtosis. Table 15 categorized data distribution as either Normally
distributed (ND) or Not Normally Distributed (NND).

The Kolmogorov-Smirnov D statistic measures the degree of deviation of the sample
distribution from a normal distribution. A higher D value indicates a lower likelihood that
the data follows a normal distribution. The associated p-value quantifies this likelihood,
where a low p-value suggests that the sample deviates from normality beyond what could be
expected by chance.

The skewness and kurtosis provide further insights into the distribution’s shape. The
skewness assesses asymmetry, with negative values indicating a greater frequency of larger
values and positive values reflecting a prevalence of smaller values. A general rule is that a
skewness value beyond the range −2 to 2 indicates significant non-normality. The kurtosis
measures the thickness of distribution tails, with positive values indicating a more peaked
distribution and negative values suggesting a flatter distribution. As with skewness, kurtosis
values outside the range −2 to 2 are considered abnormal, with values above 2 suggesting a
distribution that is too peaked and values below −2 suggesting a distribution that is too flat.

Normal distribution was observed in 6 CE tests, including those on DKC 01 (Basic data
types CE), DKC 02 (Variables CE), DKC 03 (Arithmetic operators & expressions CE), DKC
04 (Relational operators & expressions CE), DKC 10 (Conditions CE), and DKC 15 (Loops
– Basic algorithms CE). Among these, five tests exhibited positive skewness and negative
kurtosis, while the DKC 02 (Variables CE) had negative skewness.

Out of the 21 CE tests analysed, 15 deviated from the assumption of normal distribution
(71.42%). These deviations included both positive skewness and negative kurtosis values,
indicating a higher frequency of low test scores and a distribution characterized by a long
tail without pronounced peaks. The marked non-normality was particularly evident in the
DKC 07 (Priority of operators & expressions CE). In Table 4.2, the skewness and kurtosis
values exceeding the thresholds of −2 and 2 were underlined, while instances of untypical
negative skewness and positive kurtosis values were highlighted using italics.

The experimental data is publicly available at [121]. Furthermore, CE assessments of
student knowledge served as the input for BKT-based cognitive modelling.
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Table 4.2. Formative test statistics – data distribution measures.

4.2 Classification of student answers based on time on task
and the number of code evaluations

During the Data pre-processing, outliers were addressed by examining the cumulative time
spent on each task. Unanswered questions were categorized as incorrect to account for
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Table 4.3. The number of students, outliers and not-reached answer opportunities per each
DKC.

missed opportunities. Table 4.3 summarises the final number of students across each DKC.
In addition to student performance, features such as time on task, cumulative time on

task, the number of code evaluations and the cumulative number of code evaluations were
extracted for each question in the DKC test. The cumulative values represented the time
interval up to the observed question (answer opportunity). It was expected that multi-class
classification based on these additional features would further refine the binary evaluation of
a student’s answer accuracy.

The descriptive statistics for the time on task and cumulative time on task features for
each DKC are presented in Table 4.4 and Figures 4.1- 4.2, including the mean, standard
deviation, median, and maximum values for each feature.
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Table 4.4. Descriptive test statistics related to the time on task and cumulative time on task
features.

Figure 4.1. The trendline for the time on task feature.
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Figure 4.2. The trendline for the cumulative time on task feature.

The total time allocated for each formative assessment (10 minutes for DKC 01-07, 15
minutes for DKC 08-10, and 20 minutes for DKC 11-25) influenced the time on task and
cumulative time on task features. Both features showed a noticeable increase as students
progressed through the DKCs, indicating that later topics were more cognitively demand-
ing. The growing standard deviations further highlighted an increasing variability in student
performance over time, which may be attributed to differences in learning pace, prior knowl-
edge, or levels of engagement. The frequent discrepancy between the median and mean
values suggested skewed distributions. Descriptive statistics for the number and cumulative
number of code evaluations for each DKC are presented in Table 4.5 and Figures 4.3- 4.4,
including the mean, standard deviation, median and maximum values for each feature.

Table 4.5. Descriptive test statistics related to the number and cumulative number of code
evaluation features.

36



Chapter 4: Results and discussion

Figure 4.3. The trendline for the number of code evaluation feature.

Figure 4.4. The trendline for the cumulative number of code evaluations feature.

The number of code evaluations increased as students advanced through the DKCs, sug-
gesting that these topics were more challenging and required frequent testing and debugging.
The growing SDs reflected increasing variability in student behaviour throughout the curricu-
lum. The median cumulative number of code evaluations also rose across DKCs, indicating
that students likely evaluated their code more frequently as they progressed. However, the
median number of code evaluations for certain DKCs showed that many students did not
evaluate their code, particularly during the first week of assessment (DKC 01-07).

Student answers were classified using the Decision tree method, with classification based
on extracted features such as time spent on task, cumulative time spent on task, the number
of code evaluations and cumulative code evaluations. In addition to arbitrary information
gain and entropy criteria, a maximum tree depth was iteratively defined as the minimal depth
that effectively differentiated multiple classes across all DKCs. While most DKCs required a
depth of 3 to differentiate between multiple classes, a generalized approach of using a depth
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of 5 proved effective for all DKCs. The example of the resulting decision trees is presented
in Figure 4.5.

Figure 4.5. The example of Decision trees for DKC 25 CE.
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The left Decision tree on Figure 4.5 primarily splits on time on task as its root feature,
with a key threshold at 16.50. If time ≤ 1.00, the classifications belong to Class 0 (103
versus 0), making this a strong model boundary. On the other hand, further divisions are
made based on cumulative_time, and one of the most significant differences occurs at 21.5<
time≤ 61.50 and 187.00< cumulative_time≤ 1196.50, where Class 1 dominates (95 versus
390). This classification suggests that shorter time on task and lower cumulative time tend to
classify instances as Class 0, whereas longer time on task and higher cumulative time shift
towards Class 1.

The right Decision tree on Figure 4.5 is structured around the number of code evaluations
(response_evals feature), with an initial split at 0.50, suggesting its binary use. If time≤ 1.00,
the majority of cases belong to Class 0 (103 versus 0). A major differentiation in the number
of cases also occurs at time ≤ 9.50, where weights strongly support Class 0 (204 versus 8).
On the other hand, if response_evals > 0.50, time ≤ 42.50 and cumulative_time ≤ 1199.00,
weights significantly bias the classification towards Class 1 (21 versus 300). For longer
response time > 42.50, if cumulative_evals ≤ 40.50, weights make a strong case for Class
1 (5 versus 179). This classification indicates that a lower number of code evaluations and a
shorter time on task lead to Class 0, while more evaluations and a longer time on task shift
towards Class 1 classification.

The resulting classification models were cross-validated using training subsets (70%) and
evaluated on testing subsets (30%). The Decision tree approach analysed the classification
of each answer opportunity (question) in the assessment based on the extracted features.

Standard performance metrics—AUC, F1, Precision, Recall, and Accuracy—assessed
classification model outcomes. The AUC metric evaluated the model’s ability to distinguish
between classes, while the F1 Score balanced Precision and Recall, providing an overall
measure of accuracy. Precision reflected the proportion of true positive predictions among
all positive predictions, while Recall represented the proportion of true positives identified
among all actual positives. Accuracy measured the proportion of correct predictions among
all predictions. All metrics ranged from 0 to 1, with higher values indicating better perfor-
mance.

Two classification approaches were used based on the features extracted. The first clas-
sification model considered time on task features (time on a task and the cumulative time on
a task), while the second classification additionally considered code evaluation features (the
number of code evaluations and cumulative code evaluations). The results for each DKC
are presented in Tables 4.6 and 4.7. A heatmap was used for each metric to facilitate vi-
sual comparison. Italicized values indicate improvements in cross-validation results, while
bolded values in Table 4.7 reflect improvements in time-based classification results compared
to those in Table 4.6.
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Table 4.6. The classifications based on time on task features.

Table 4.7. The classifications based on time on task and code evaluation features.

The average evaluation metrics for classifications based solely on time on task features
were 0.66654 for AUC, 0.55917 for the F1 score, 0.79177 for Precision, 0.74600 for Recall,
and 0.74476 for Accuracy. In contrast, when incorporating code evaluation features, the av-
erage results improved to 0.73969 for AUC, 0.66386 for the F1 score, 0.81437 for Precision,
0.83100 for Recall, and 0.80229 for Accuracy.

The later DKCs in the course showed more consistent student performance, indicating
that the classification models were more effective at capturing the underlying patterns in both
cross-validation and evaluation phases. For these DKCs, including code evaluation features
led to most metrics improvements. This suggests that the significance of code evaluations
may vary depending on the complexity of the DKC and the underlying data.
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However, a decline in performance from cross-validation to evaluation results indicates
neither approach generalised effectively. This highlights a potential issue of overfitting to the
training data. Additionally, the requirement for extensive student engagement across eight
weekly tests may have influenced performance outcomes.

Both classification models were further used for the BKT-based cognitive modelling.

4.3 BKT model parameters

Eighteen BKT models were analyzed, including the vanilla model (#01), its forgetting-
enhanced version (#02), eight models based on time on task features (#03-#10) and eight
models that incorporate both time on task and code evaluations features (#11-#18). The BKT
models are described using the probabilities of prior knowledge parameter (Prior), guessing
parameter (Guess), slipping parameter (Slip), transitioning to the learned knowledge state
parameter (Learn) and forgetting parameter (Forgets). The pyBKT models based on mul-
tiple classes include the multiple guess and slip model (multigs), the multiple learn model
(multilearn) and the multiple prior knowledge model (multiprior).

Regarding the number of parameters fitted for each BKT model, the vanilla model re-
quired four parameters: Prior, Guess, Slip, and Learn. The forgetting-enhanced version of
the vanilla model and the multilearn and multiprior models required five parameters. The
multigs models considered a total of six parameters. Most models utilized seven parameters
(multigs+forgets, multilearn+forgets, multigs+multilearn). The multiprior+forgets models
accounted for eight parameters, however, experimental results indicated that only the De-
fault class of the Forget parameter as Class1 and Class2 of the Forget parameter consistently
equalled zero. The maximum number of parameters considered was nine, as seen in the
multigs+multilearn+forgets models.

The BKT models were fitted using the training subsets and 5 initializations of the EM
algorithm. The models were seeded to preserve the replicability and the Guess and Slip
parameter probabilities were bounded to 0.5.

The resulting parameter probabilities for each DKC are presented in Tables A1- A21
(Appendix A).

To analyse the resulting BKT parameters, the dispersion metrics were calculated for each
model across DKCs 01-25. The results include Minimum (Min), Maximum (Max), Mean,
Standard Deviation (SD) and the 75% Median (Med 75%) for each parameter, as detailed in
Tables 4.8- 4.12.
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Table 4.8. BKT model parameter probabilities – Dispersion metrics for DKCs 01-25
(Prior).

Depending on the BKT model, the Guess parameter reflects either a single class proba-
bility (Default) or a multi-class probability (Class0 and Class1). The vanilla model yielded a
Default probability of 0.10643 (SD 0.07253), which increased to 0.14355 (SD 0.08840, #09
and #17) for multiprior models. This baseline result represented a moderate value compared
to the multi-class probabilities. In the multi- class BKT models, Class0 values ranged from
0.01021 (SD 0.01350, #08) to 0.03162 (SD 0.02165, #11), while Class 1 values ranged from
0.08545 (SD 0.09698, #12) to 0.20002 (SD 0.11332, #11).

Similarly, the Slip parameter resulted in either single- or multi-class probabilities. The
baseline vanilla model produced a moderate value of 0.30264 (SD 0.13332), with other
single-class models reaching the lowest value of 0.19513 (SD 0.10895, #10 and #18). In the
multi-class BKT models, Class0 values ranged from 0.45721 (SD 07395, #04) to 0.49914
(SD 0.00329, #15), while Class1 values from 0.15725 (SD 0.07672, #16) to 0.23151 (SD
0.11313, #07).

The baseline vanilla model resulted in a Learn parameter value of 0.00699 (SD 0.00901).
Other models also had low values of the Default class, with the highest being 0.04381 (SD
0.02206, #10 and #18). In addition, the multiprior models, which specifically considered
student answers at the first opportunity (Class 1 and Class 2), produced higher Learn param-
eter values, ranging from 0.09026 (SD 0.06764, Class1 of the #17 model) to 0.63626 (SD
0.21095, Class2 of the #18 model).

The Forgets parameter in the baseline vanilla model yielded a value of 0.04263 (SD
0.02697), representing a moderate value compared to both single and multi-class models. In
the multi-class models, this parameter ranged from 0.03906 (SD 0.02125, Class1 of the #14
model) to 0.07714 (SD 0.07693, Class0 of the #16).

To further discuss the probabilities of the BKT parameters, dispersion metrics were pre-
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sented for specific model groups based on parameter usage. These groups included the
multigs model group (#03, #04, #07, #08, #11, #12, #15, #16), the multilearn group (#05,
#06, #07, #08, #13, #14, #15, #16) and the multiprior group (#9, #10, #17, #18).

Additionally, model groups were analysed based on the features used in student answer
classification, comprising the time-on-task group (#03 - #10) and the time- and evaluation-
based group (#11 - #18).

The results from these model groups were compared to the baseline vanilla BKT model
(#01) and its forgetting-enhanced version (#02). The analysis included Minimum (Min),
Maximum (Max), Mean, Standard Deviation (SD) and the 75% Median (Med 75%) metrics.
The results for each model group across DKCs 01-25 are presented in Tables 4.13- 4.17.

Table 4.13. BKT model parameter probabilities – Dispersion metrics for BKT model groups
(Prior).

Compared to the baseline vanilla model, which exhibited the lowest Prior parame-
ter value, the multigs model group showed the highest mean Prior value of 0.59837 (SD
0.18933). The time-based and time- and evaluation-based model groups yielded a similar
moderate mean of 0.55118 (SD 0.19272) and 0.55359 (SD 0.18042). The Prior parameter
varied significantly, especially across the two feature-based model groups.

While the baseline vanilla model produced a moderate Guess parameter value, the multi-
prior model group showed slightly higher values. The multigs and multilearn model groups
distinguished Class0 with a lower Guess probability (0.02127 and 0.02065, SD 0.02135 and
SD 0.02069) and Class1 with a significantly higher Guess probability (0.13600, SD 0.14155
and SD 0.14107). The feature-based model groups followed a similar pattern of lower Class0
and higher Class1 probabilities as seen in the multigs and multilearn group models.

For the Slip parameter, the multi-class model groups and the feature-based model group
defined Class0 as significantly higher and Class1 as lower than the baseline vanilla model.
The Slip parameter reached a maximum value of 0.5 across all model groups.

The Learn parameter probabilities were generally low across all model groups, often
below 0.04, reflecting knowledge acquisition’s slow and incremental nature. While the base-
line vanilla model showed the lowest value of 0.00699 (SD 0.00859), other models pro-
duced Default probabilities ranging from 0.01674 (multigs model group, SD 0.02164) to
0.03305 (multiprior model group, SD 0.02150). In the multi-class models, Class0 ranged
from 0.01313 (multilearn model group, SD 0.01750) to 0.14507 (multiprior model group,
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SD 0.08519), while Class1 ranged from 0.02206 (multigs model group, SD 0.03093) to
0.55233 (multiprior model group, SD 0.26696).

The Forgets parameter probability averaged up to 0.06434 (SD 0.06000) for Class0 of
the multigs model group.

The analysis of eighteen enhanced BKT models revealed that more complex models,
incorporating features such as time spent on the task and the number of code evaluations,
captured finer details in student learning behaviours. These advanced models effectively
differentiated students’ patterns of prior knowledge, guessing, slipping, learning, and forget-
ting, providing clearer insights into the process of knowledge acquisition. Both feature-based
model groups (time-based group and time- and evals-based group) effectively distinguished
between the educational contexts in which students completed tasks. Students classified in
Class0 were generally less likely to guess correctly compared to those in Class1. Similarly,
students in Class0 were more prone to making errors despite knowing the material, in con-
trast to their counterparts in Class1. The Learn parameter for Class0 was consistently lower
than that for Class1, indicating a more gradual learning progression for students in Class0.

4.4 Prediction of student performance

Regarding student performance prediction, the BKT models were cross-validated using a
training subset consisting of 70% of student-level data and evaluated on a testing subset
comprising the remaining 30%. These student-level subsets ensured that each student’s data
were utilized for training or testing purposes.

The 5-fold cross-validation, which involved combinations of BKT parameter fittings and
model evaluations, was applied to the training subset to explore the potential parameter
space. The evaluation of models based on the BKT parameters and the unseen data in the
testing subset ensured that the models could generalize effectively.

The results for each DKC were reported using RMSE, AUC, and Accuracy metrics and
can be found in Tables B1- B21 (Appendix B).

To discuss the prediction results, the average values across DKCs for each BKT model
are presented in Table 4.18. The metrics include RMSE Average (SD), AUC Average (SD)
and Accuracy Average (SD), and are visualized using heatmaps.

Furthermore, the average prediction results across DKCs are presented for parameter-
based and feature-based model groups, including multigs, multilearn, multiprior, time-based
group and time- and evaluation-based group in Table 4.19. Heatmaps were used for each
metric, with baseline results repeated for comparison.

The enhanced multigs+forgets (#12) and multigs+multilearn+forgets (#16) showed the
best average performance across DKCs. The evaluation results for model #12 included an
RMSE of 0.35456 (SD 0.04347), AUC of 0.88248 (SD 0.04830), and Accuracy of 0.82999
(SD 0.05266). Similarly, model #16 achieved an RMSE of 0.35160 (SD 0.04329), AUC of
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0.88108 (SD 0.04899), and Accuracy of 0.83048 (SD 0.05037).
Among the broader model groups, the multigs group yielded the best average perfor-

mance, with an RMSE of 0.37060 (SD 0.04031), AUC of 0.86023 (SD 0.05246) and Accu-
racy of 0.81478 (SD 0.04599). Also, both time- and evaluation-based groups overperformed
the baseline vanilla BKT model.

The slightly lower performance observed during evaluation compared to cross-validation
indicated potential overfitting in the models, suggesting that further tuning or additional data
was necessary to improve generalization. While the trend was consistent across DKCs, some
topics appeared to benefit more from including time on task and code evaluation features.
This variation may reflect differences in the nature of the content or patterns of student
interaction specific to these DKCs.

To quantify the statistical significance of the differences in RMSE and AUC prediction
results across DKCs, the nonparametric Wilcoxon Signed Rank Test is employed [122]. This
test evaluates whether the two paired groups differ significantly in their medians and assumes
the null hypothesis that both groups have identical distributions. The W-value denotes the
range in magnitude, and a p-value below 0.05 indicates a statistically significant difference,
as presented in bold in Tables 4.20 and 4.21.

Table 4.20. Prediction of student performance (RMSE) – Wilcoxon Signed Rank Test results.
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Table 4.21. Prediction of student performance (AUC) – Wilcoxon Signed Rank Test results.

The Wilcoxon Signed Rank Test results indicated a statistically significant difference in
RMSE for 12 out of 17 BKT models and AUC for 13 out of 17 models compared to the
baseline vanilla BKT model. Specifically:
- For RMSE, four time-based BKT models (#03, #05, #07, #10) and one time- and
evaluation-based model (#13) showed no significant difference.
- For AUC, two time-based BKT models (#05 and #10) and two time- and evaluation-based
models (#13 and #18) showed no significant difference.

This demonstrated that the enhanced BKT models overperformed the vanilla BKT model
in predicting student performance. The reduction in RMSE and improvements in AUC and
Accuracy metrics indicated that additional features enhanced the model’s ability to capture
important aspects of student learning and performance trends across different DKSs. This
suggested that the added features were relevant to understanding the nuances of student be-
haviour and knowledge mastery.

4.5 Estimation of knowledge mastery

In the context of BKT-based adaptive assessment, knowledge mastery is estimated using the
final mastery probability on a 0-1 scale. In contrast, in traditional assessment contexts, mas-
tery is typically observed as a percentage-based student performance in both formative and
summative assessments (midterm and final exams). The relationship between the final adap-
tive BKT probability and the student performance in formative and summative assessments
was analysed using the Pearson correlation (r) and the related p-value. The model’s ability
to classify students with positive performance (over 50% overall) was additionally evaluated
using the F1 score. The mastery estimation was performed using the testing subset and the
complete dataset.

The results for each DKC based on the testing subsets are presented in Tables C1- C21
(Appendix C), while the complete dataset results for each DKC are shown in Tables C22-
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C42 (Appendix C).
To summarize, average estimations for the testing subsets across DKCs for each BKT

model are presented in Table 4.22, which includes a heatmap for the following metrics:
Pearson r Average (SD), p-value Average (SD) and the F1 Average (SD).

The average estimation results across DKCs per parameter-based and feature-based
model groups were compared to the baseline vanilla BKT model (#01) and its forgetting
enhanced version (#02), with these comparisons displayed in a heatmap (Table 4.23).

Based on the average estimation results, the baseline vanilla model yielded a statisti-
cally significant Pearson correlation r of 0.83883 (SD 0.02751) for formative assessments,
0.46968 (SD 0.11314) for the midterm exam and 0.40604 (SD 0.09694) for the final exam.
Several models overperformed the baseline vanilla model, including multilearn and multi-
prior models (#05, #09, #13 and #17) in formative correlations and classification, and multi-
prior models (#09 and #17) in midterm exam correlations. Models with p-values below 0.05
indicated statistically significant correlations.

The results from the BKT model groups showed that neither parameter- nor feature-based
generalizations outperformed the baseline vanilla model.

Most BKT models exhibited strong positive correlations with student performance in
formative assessments, often with Pearson r values and F1 scores exceeding 0.7. However,
there was a noticeable decline in correlation and classification performance for the sum-
mative midterm exam, with further drops for the final exam, reflecting reduced estimation
accuracy as the assessments become more temporally distant from the learning sessions.
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4.6 Student learning paths

Based on the learning path, which represents the sequence of binary correctness of student
answers in the assessed tasks, model convergence information was also included into the
BKT ranking. Student learning paths were analysed for each BKT model using the average
number of answer opportunities in each examined dataset, along with the corresponding
SD. The ideal learning path for each model referred to the minimum number of answer
opportunities needed to achieve knowledge mastery, which included a mastery threshold of
95%.

The results regarding student learning paths are presented in Tables D1- D21 (Appendix
D).

To facilitate discussion of the results, average values across DKCs 01-25 were calculated
for each BKT model (Table 4.24) and model group (Table 4.25).

Table 4.24. Student learning paths – Average results (DKCs 01-25) per BKT model.

Table 4.25. Student learning paths – Average results (DKCs 01-25) per BKT model group.

For the baseline vanilla BKT model, the average number of answer opportunities in the
testing subset was 11.81783 (SD 7.80907), while in the ideal context, students achieved
mastery with an average of 2.28571 answer opportunities. The multigs, multigs+multilearn
and multigs+multilearn+forgets models (#03, #07, #08, #11, #15, #16) overperformed the
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baseline vanilla model, yielding the lowest average of 8.97177 answer opportunities (SD
7.77224 for #03) and 1.23810 opportunities in the ideal context.

In addition to the model’s ability to predict student performance and estimate knowledge
mastery, it was important to include the average and ideal number of answer opportunities
for the BKT models. Considering the mastery threshold of 0.95, the earliest possible model
convergence was crucial for drawing conclusions about student knowledge.

4.7 BKT model ranking

For each DKC, the BKT models were ranked using Composite scores derived from the nor-
malised features. Two sets of equal feature weights were applied, depending on the avail-
ability of summative assessment data (midterm and final exams).

Composite score A incorporated the following features: student performance prediction
(RMSE, AUC), knowledge mastery estimation (Correlation and F1-Formative, Correlation
and F1-Midterm, Correlation and F1-Final), and adaptive answer opportunities (Average,
Ideal). In this approach, ten features were assigned an arbitrary equal weight, with each
receiving a value of 0.1.

Composite score B, in contrast, was based on student performance prediction (RMSE,
AUC), knowledge mastery estimation (Correlation and F1-Formative), and adaptive answer
opportunities (Average, Ideal). In total, six features were assigned arbitrary equal weight,
with each receiving a value of 1/6 0.166̇.

The BKT model ranking results, based on normalised features for each DKC, are pre-
sented in Tables E1- E21 (Appendix E).

Table 4.26 provides the average values across DKCs for each BKT model, including
metrics such as RMSE (SD), AUC (SD), Correlation and F1 scores (for Formative, Midterm
and Final assessments). Additionally, the table includes the Average learning paths and Ideal
Average learning paths. The results are visualized using heatmaps.

Based on the average results for each BKT model and considering the summative assess-
ment data (Composite score A), two enhanced BKT models outperformed the vanilla model.
The #01 vanilla model had an average rank of 5.57143 (SD 2.73551), while the #05 multi-
learn T model ranked at 5.14286 (SD 2.45504) and the #13 mutilearn TE model at 5.47619
(SD 3.03345).

For Composite score B, eight enhanced BKT models outperformed the vanilla BKT
model (Mean 8.71429, SD 3.28261). The #11 multigs TE model achieved the best aver-
age rank of 3.80952 (SD 2.34255).
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4.8 Discussion

Hypothesis 1, regarding the feasibility of the BKT model, was addressed by considering the
requirements, results, and limitations identified in the previous research tasks.

For Data collection, empirical research was conducted using an in situ quasi-
experimental design within the Introductory Programming course, involving a sample of
150 students. Weekly course topics represented granulated Domain Knowledge Components
(DKC) used to evaluate student knowledge through Controlled Environment (CE) formative
assessments. Each test comprised 20 randomised Virtual Programming Lab (VPL)-based
questions of equal difficulty and was administered at the beginning of the laboratory ex-
ercises. The in situ experimental settings were recognized as a potential limitation of this
research task. Despite its limitations, the benefits of in situ experiments often outweigh the
challenges, such as less controlled real-world environment and variability, especially when
the goal is to provide realistic, hands-on learning experiences.

Regarding Data pre-processing, features related to the time spent on tasks and the number
of code evaluations were successfully extracted for each collected CE test dataset. A clas-
sification model was developed based on time and cumulative time on task features along-
side the model that additionally incorporated the number and cumulative number of student
code evaluations. Although the latter classification model was tailored for the programming
domain, the performance results prompted the use of both models in further research on
BKT-based cognitive modelling. A potential limitation of this research task included the
approximation of time per question.

Based on the pre-processed data, fitting the BKT parameters and evaluating models en-
sured the feasibility of the BKT model. A total of 18 BKT models were fitted, including the
vanilla model, its forgetting-enhanced version, and two feature-based model groups, includ-
ing time-based group and time- and evaluation-based group. The randomness was controlled
using the seed parameter, the Guess and Slip parameters were bounded to 0.5, while the EM
algorithm included 5 initializations. For each DKC, the BKT model that balanced student
performance prediction, estimation of knowledge mastery, and timely model convergence
was identified. Consequently, the evaluation results of all enhanced BKT models confirm
their feasibility. The nuances in their capabilities facilitated the proposal of the Compos-
ite scores that encompassed various evaluation aspects. As a result, an additional hypothesis
was proposed to establish a framework for ranking BKT models to identify the most effective
model that overperformed the baseline vanilla model (Hypothesis 2).

To address Hypothesis 2, an analysis of BKT ranking results was conducted by sum-
marizing the top-performing models along with the comment on the related not statistically
significant (NSS) data (Table 4.27). This summary comprehensively evaluated model per-
formance and highlighted which models demonstrated the most statistically significant im-
provements.
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Table 4.27. The best performing BKT models per DKC - Composite scores A and B.

For Composite score A, which accounted for both formative and summative assessments,
the enhanced BKT models (#02-#18) outperformed the baseline vanilla model in all DKCs.
Among the enhanced models, the multilearn+forgets TE (#14), the multigs+multilearn TE
(#15) and the multigs+multilearn+forgets TE (#16) models most frequently achieved the best
performance, with 13 out of 21 DKCs. The statistical significance for differences with the
baseline vanilla model was not established in five DKCs. Specifically, DKC 01, DKC 16 and
DKC 19 lacked significance in correlation results with the Final exam, while DKC 03, DKC
08 and DKC 16 for the prediction results of the RMSE metric.

For Composite score B, which focused solely on formative results, the enhanced mod-
els (#02-#18) consistently outperformed the baseline vanilla model across all DKCs. The
multigs+multilearn+forgets (#16) BKT model was the most frequent top performer, appear-
ing as best in 11 out of 21 DKCs. Statistical significance was established across all DKCs.

Although the vanilla BKT model demonstrated strong average performance, it was con-
sistently surpassed by the enhanced BKT models across all DKCs. The variation in model
performance, particularly the repeated prominence of the multigs+multilearn+forgets (#16)
BKT model in the later DKCs, indicated a more robust fit for more complex learning tasks.

Overall, the enhanced BKT models provided a more nuanced understanding of student
learning processes, making them the more effective choice for modelling student knowledge.
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5 DEMONSTRATION OF THE BKT-BASED
ADAPTIVE FORMATIVE ASSESSMENT

To address the hypotheses, a data mining approach encompassing the research tasks of Data
collection, Data pre-processing, BKT parameter fitting and BKT model evaluation was pro-
posed. Furthermore, BKT-based adaptive formative assessment was implemented in the
widely used Moodle LMS, which does not provide adaptive assessment. Although the as-
sessment aimed to include any type of question, VPL-based questions were set as research
prerequisites. In general, the adaptive assessment implementation integrated the Moodle
VPL activity module, the VPL Question type, and the pyBKT library for cognitive mod-
elling. Two types of Moodle modules were developed, including quiz report and activity
module types.

Regarding the Data collection task, the BKT Quiz Report (BKT-QR) prototype module
builds on the typical Moodle quiz (Initial assessment) and provides the report for each quiz
question (Initial BKT report). The BKT Quiz (BKT-Q) prototype module uses the Initial
BKT report and provides the fitting and evaluation of BKT models. It builds on the BKT
API, which implements the functionalities of Data pre-processing, BKT parameter fitting,
and model evaluation tasks. Based on the selected BKT model, the Moodle LMS provides
adaptive assessment. The relationships between the research tasks, the BKT API, and the
prototype modules are presented in Figure 5.1.

Figure 5.1. Research tasks and Moodle LMS prototype modules.

In the furter subsections, the prototype modules and the BKT API are described. For the
BKT-QR prototype module, the use cases, database tables used to extract data, the prototype
structure, and related classes and methods are described (Section 5.1). The BKT API’s struc-
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ture, data handling, and related endpoints for data retrieval and submission are presented in
Section 5.2. For the BKT-Q module, the dependencies and the high-level prototype architec-
ture are presented (Section 5.3). While the dependencies include the standard Moodle quiz
engine and VPL modules, the prototype architecture illustrates interactions between a user,
Moodle LMS, BKT-Q prototype module and BKT API.

Also, in situ experimental guidelines are presented, including the Self-practice and adap-
tive assessments (Section 5.4.1), and the usability study (Section 5.4.2).

5.1 BKT Quiz Report prototype module

The BKT-QR prototype module generates a report for a typical Moodle quiz with ques-
tions presented on a single page and sequential navigation. Along with standard question
data, it presents the time spent on a task and the number of code evaluations for the VPL-
based questions. The resulting Initial BKT report is primarily designed for use by the BKT-
Q prototype module. The development environment included the Moodle LMS (v4.1.5+)
and the XAMPP package consisting of Apache HTTP Server (v2.4.58), MariaDB database
(v10.4.32) and PHP (v8.0.30).

The use case scenario for the BKT-QR prototype module refers to a teacher who gener-
ates a report and the sub-scenario of setting the report option to include not-reached answer
opportunities. Once presented, a teacher can download the report in a selected format (e.g.,
Coma separated values, Microsoft Excel, etc.).

The server-sided reporting relies on the standard and extensive Moodle LMS
database [123]. The BKT-QR prototype module bridges the unique student quiz attempt
and related question data. Figure 5.2 shows the data model utilised by the BKT-QR proto-
type module, referring to the core tables of course, quiz, user and question. More specific
tables on the quiz and question attempts provide details such as time spent on the task and
the number of code evaluations.

Regarding the time aspect, the timecreated attribute of the question_attempt_steps
table is leveraged, as well as the question’s complete state attribute or the submitted student
answer. The time spent on a task is calculated as a difference between the previous and
current question timestamps.

The question_attempt_step_data table provides the number of student code evalua-
tions. The VPL question evaluation results in the _evaldata name attribute and the related
JSON-formatted value containing the number of evaluations (nevaluations in Figure 5.3).
The number of evaluations per question is calculated based on the iteration over question
steps. Time and evaluation features are set to -1 for not-presented or not-reached questions.

The BKT-QR prototype module follows the standard Moodle architecture, includ-
ing the default classes’ extensions, the default file and folder structure and the target
mod/quiz/report path. It consists of the components presented in Table 5.1.
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Figure 5.2. Moodle LMS database tables utilised by the BKT-QR prototype module.

Figure 5.3. The example of the evaluation data in the question_attempt_step_data table.
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Table 5.1. The BKT-QR prototype module components.

Figure 5.4. Class diagram of the BKT-QR prototype module.

Figure 5.4 presents the Unified Modelling Language (UML) class diagram of the BKT-
QR prototype module. All classes extending standard Moodle classes are presented as de-
pendency relationships. The quiz_bkt_report class uses the quiz_bkt_options class to
manage the report’s settings and options, the quiz_bkt_settings_form class to present and
handle form elements and the quiz_question_bkt_table class to manage how the table
is displayed (all presented as association relationships). The quiz_bkt_settings_form

class allows teachers to include not-reached answer opportunities in the report. The
quiz_bkt_options class independently encapsulates the configurable settings for the Initial
BKT report, while the quiz_question_bkt_table renders table data.

The UML sequence diagram is presented in Figure 5.5. The sequence begins
with the display() method in quiz_bkt_report, which manages the entire re-
port generation process. The teacher requests the report, which triggers the init()
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method. During this initialization, the quiz_bkt_options object is created. Next, the
process_settings_from_form() method processes the settings submitted via the form,
applying them to the options object. Afterward, setup_from_form_data() is called to re-
fine the options further, ensuring the settings are accurately initialized. The set_data()

method then updates the form with the prepared options and configuration for render-
ing. Finally, get_initial_form_data() retrieves the initial settings, prepopulating the
form fields with the default or previously saved values. These methods, as part of the
quiz_bkt_report class, ensure the form is correctly processed, validated, and preloaded.

Once the form is set up, several internal methods within quiz_question_bkt_table

are called to process the data and manage the table columns. First, the constructor initializes
the table with necessary parameters, such as quiz details, context, and display options. Then,
build_table($attempts) is called to begin generating the table, processing the attempt
data and preparing it for rendering. The data_col($colname, $attempt) method formats
and returns the data for each column based on the attempt details. If additional data is needed
for specific columns, field_from_extra_data($attempt, $fieldname) retrieves the re-
quired field data from extra data linked to the attempt. For custom columns like responses
or right answers, other_cols($colname, $attempt) calls data_col() to handle the data
for those columns.

As the table is populated, requires_extra_data() is called to check whether extra
data, such as response times or evaluations, is needed for the table. If extra data is re-
quired, load_extra_data($attempts) is invoked to interact with the Moodle database
and fetch the supplementary information. Methods like find_complete_step($steps,

$desiredstate) and find_response_time($steps, $state) are used during this pro-
cess to calculate response times and identify the completion status of each question attempt.
Additionally, get_question_attempt($attempt, $slot) retrieves specific question at-
tempt data, while get_quiz_attempt($attemptid) is used to fetch the quiz attempt data.
Once all the data is processed and formatted, the completed report is ready to be presented
to the teacher, concluding the sequence.

The resulting Initial BKT report provides the following information: Quiz ID, Student
ID, First name / Last name, Answer opportunity, Question ID, Grade, Quiz max grade, Quiz
grade %, Student performance, Time taken (sec), Cumulative time, Response evals, Cumu-
lative evals, Student answer and Right answer.

5.2 BKT API

The BKT Application Programming Interface (API) links the pyBKT Python library for
cognitive modelling (described in 3.3.) and the Moodle LMS. Its primary functions include
reading Moodle quiz data (the Initial BKT report), fitting and evaluating the proposed BKT
models, and updating students’ knowledge mastery levels. The BKT API was developed
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Figure 5.5. Sequence diagram of the BKT-QR prototype module.

Table 5.2. The BKT API components.

using the Flask Python web framework (version 2.3.2) and Docker service (version 7.1.0)
to facilitate containerisation, thereby ensuring consistent environmental settings. Libraries
integrated within this environment include pandas (version 1.4.1), numpy (version 2.0.1),
scikit-learn (version 1.5.1), scipy (version 1.14.0) and pyBKT (version 1.4.1). The API’s
functionality was tested with the Postman tool.

The specific components of the BKT API are presented in Table 5.2.
The BKT API uses Python’s Pickle module to manage data processing, enabling serial-

ization and storage of BKT and classification models in pickle files (.pkl). Upon retrieval,
data is deserialised and returned in a structured JSON object format. The data components
stored within the API’s storage folder include:

• classification models: Decision tree-based models

• classification model evaluation metrics: AUC, F1 score, Precision, Recall, Accuracy

• BKT models: pyBKT models defined by Prior, Guess, Slip, Learn and Forgets param-
eter probabilities

• BKT model evaluation metrics
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Table 5.3. BKT API endpoints.

• student performance prediction metrics: cross-validation metrics based on the training
subset (RMSE, AUC, Accuracy) and evaluation metrics based on the testing subset
(RMSE, AUC, Accuracy)

• knowledge mastery estimation metrics: correlation metrics of Pearson r and p-value
and prediction metric of F1 score

• answer opportunity metrics: the average and ideal number of answer opportunities.

Regarding knowledge mastery estimation, it is important to note that the BKT API does
not consider summative assessment (midterm or final exam) data. Since this data may not
be directly related to the Moodle database, including it could be explored as part of future
research.

The BKT API is constructed using a standardized Flask framework, which includes key
functionalities such as data preprocessing, model fitting and evaluation, knowledge mastery
calculation, file path generation for data storage, and helper methods for data storage and
retrieval.

The BKT API endpoints, listed in Table 5.3, define specific pathways for handling re-
quests related to data retrieval and submission.

5.3 BKT Quiz prototype module

The BKT-Q prototype module utilizes the Initial BKT report from the BKT-QR module to
enhance the adaptive assessment. It allows for fitting and evaluating BKT models while
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continuously updating student knowledge mastery by integrating the pyBKT cognitive mod-
elling library of the BKT API.

The BKT-Q prototype module leverages Moodle’s standard question engine, the com-
plex underlying system responsible for managing questions, student answers, grading, and
feedback. One of its central components, Question Usage By Activity (QUBA), manages
question instances in activities by tracking their usage, states, and outcomes. When a student
interacts with a question, QUBA creates an attempt, logs each answer in a sequence of steps,
and records every transition from an initial answer to final grading. More specifically, the
question_attempt class consists of a list of question_attempt_steps and is responsible
for the complete history of question states. Although limitedly documented, the question en-
gine was described using sequence UML diagrams for displaying a quiz page and processing
student answers (Figure 5.6) [4].

When a student accesses a quiz page in Moodle (e.g. by visiting
modquizattempt.php?id=123), the system initiates the data retrieval process by ex-
ecuting load_usage(123) to access the quiz attempt data. The question_engine

component then creates a new quiz attempt instance($quba with ID 123) and begins the
rendering process by invoking render_question(1, $qopt), where $qopt specifies
display options for each question. During rendering, the engine generates various output
components such as $qoutput and $qimoutput, responsible for assembling different parts
of each question’s content. These output components collaborate to construct the HTML
structure, integrating text, images, and interactive elements. The final HTML content is then
sent to the student’s browser, enabling them to view and interact with the quiz questions
directly.

When a student submits quiz answers via a POST request to
/mod/quiz/processattempt.php, Moodle’s backend processes the submission,
including details such as the quiz attempt=123 and individual answers (e.g.
q123_1_answer=frog). Initially, load_usage(123) retrieves the relevant quiz attempt
data, and process_all_actions() manages the processing of each submitted an-
swer. For each question, Moodle calls set_submitted_data() to record the response,
get_expected_data() to retrieve the required data, and validates the input. The interac-
tion component evaluates each answer using process_action() and assigns a grade with
set_fraction() based on response accuracy. Each grading instance is temporarily stored
in pendingstep, documenting each part of the submission. After processing all responses,
Moodle calls save_usage($quba) to store the updated attempt data, then redirects the
student to a page displaying their updated quiz status or feedback.

Moreover, the VPL activity module is a prerequisite for the proposed BKT-based assess-
ment, functioning as an intermediary that enables clients to submit and monitor programming
tasks. These tasks are executed on specialized servers that process the code and provide feed-
back to both Moodle and the client (Figure 5.7).
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Figure 5.7. Moodle VPL activity module [5].

The VPL Question module enables continuous integration of the VPL activity module
within Moodle quizzes (Figure 5.8). In this workflow, when a student submits code (e.g.
print("Hello World")), it is inserted into a pre-configured file template set up by the
teacher, which includes a ANSWER placeholder. This placeholder is dynamically replaced
with the student’s code submission, resulting in a fully executable file. Additionally, sup-
plementary files and scripts are integrated to facilitate testing and configure the required
environment. The VPL then executes these files within a controlled environment, allowing
for automated code evaluation and providing immediate feedback to the student.

The BKT-Q prototype module is built on Moodle’s standard activity module framework,
integrating the CAT (Computer-Adaptive Testing) implementation for the Moodle activity
module [124]. This module allows teachers to design assessments that evaluate student
abilities using the CAT algorithm [125], as discussed in [126]. Initially created through a
collaborative effort between Middlebury College and Remote Learner, the original reposi-
tory was archived in 2022 [127]. Due to its wide application, with over 677 active sites as
of May 2024, further development has continued through other forks of the project [127].
Moreover, the CAT activity module has been recognized and used as a base for new Moodle
plugins focused on adaptive testing [128]. The development environment for the BKT-Q
prototype included Moodle LMS (v4.1.5+) and the XAMPP package, consisting of Apache
HTTP Server (v2.4.58), MariaDB database (v10.4.32) and PHP (v8.0.30).

The use case scenario for the BKT-Q prototype module involves a teacher who configures
an adaptive assessment by specifying a mastery threshold probability (e.g. a default value
of 0.95) and a question pool, uploading a CSV file to fit and evaluate the proposed BKT
models, and selecting the BKT model to be used for the adaptive assessment. Based on
student quiz attempts, a teacher downloads a BKT report containing knowledge mastery
probabilities for each quiz question. From the student’s perspective, the use case scenario of
the adaptive assessment begins with the quiz attempt, dynamically updating the knowledge
mastery probability, and concluding the assessment when the probability exceeds the set
threshold. The architecture of the BKT-Q prototype module, illustrating the interactions
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Figure 5.8. Moodle VPL Question module [6].

between the user, Moodle, the BKT-Q prototype module and the BKT API, is presented in
Figure 5.9. The user, representing a teacher or student within the Moodle LMS environment,
interacts with the BKT-Q prototype module. The API Interface acts as an intermediary,
forwarding requests between the Moodle BKT-Q prototype module and the BKT API. The
BKT API processes these requests and stores relevant data, such as classification results and
BKT model parameters, in its internal storage/ folder.

In BKT-based assessment, both client-side and server-side components collaborate to
provide an adaptive quiz experience. Users interact with the quizzes on the client side,
which comprises the User Interface within Moodle, submit their answers, and view feedback.
User actions on the client side trigger HTTP POST and GET requests sent to the server. The
server side includes Moodle’s backend, the BKT-Q prototype module and the BKT API.
The BKT-Q prototype module manages quiz attempts, handles HTTP requests directed to
the BKT API and uses returned knowledge mastery data to update the student model and
adapt the quiz dynamically. The BKT API, which runs on a separate server, handles specific
requests that update student models. The Database Layer in Moodle stores user data related
to quiz attempts, while the BKT API accesses its storage folder containing classification and
BKT model data. This architecture ensures that user actions on the client side are captured
while the server side processes the data and adjusts quiz questions according to the student’s
evolving mastery, facilitating a personalized and adaptive learning experience.

The BKT-Q prototype module leverages three additional database tables and introduces
new fields to support the BKT-based assessment functionality. The main configuration table,

69



Chapter 5: BKT-BASED ADAPTIVE FORMATIVE ASSESSMENT

Figure 5.9. BKT-based assessment architecture.

bktquiz table, stores settings for each adaptive quiz instance, including the quiz name,
the allowed number of attempts, mastery requirements and selected BKT model. The
bktquiz_question table manages quiz-to-question associations, linking each quiz to rel-
evant question categories within the question bank for adaptive selection. Meanwhile, the
bktquiz_attempt table logs each user’s quiz attempt, tracking the student’s progress, in-
cluding the number of questions attempted, the current knowledge mastery probability and
any conditions prompting quiz termination. This table contains specific fields for BKT data,
such as masterydata, which stores detailed information on mastery progression across at-
tempts. The key fields introduced and used by the BKT-Q prototype module are presented in
Table 5.4.

In the initial use case scenario, a teacher creates an adaptive assessment as a new activity
(Figure 5.10) and sets the mastery threshold and the question pool for adaptive selection
(Figure 5.11). Then, the teacher uploads a CSV file to fit and evaluate the BKT models
(Figure 5.12). Following an analysis of the model information presented, the teacher selects
the appropriate BKT model for the adaptive assessment (Figure 5.13). Upon this selection,
the system displays the BKT parameters (Figure 5.14) along with classification model data
(Figure 5.15). Once the assessment is underway, the teacher has the option to download
a detailed report of the assessment results, which includes the probability of knowledge
mastery for each individual question (Figure 5.16).
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Table 5.4. Key fields in the BKT-Q prototype module database tables.

Figure 5.10. Adaptive BKT Quiz.
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Figure 5.11. Stopping conditions – Mastery required to stop.
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Figure 5.12. Upload CSV data.

Figure 5.13. Choose BKT model.
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Figure 5.14. Selected BKT model data.
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Figure 5.15. Classification model data.
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Figure 5.16. BKT Report example.

When a student initiates the adaptive assessment, a question is randomly selected from
the question pool. For assessment using enhanced BKT models, the student’s answer is
classified based on time spent on the task and the number of code evaluations. By considering
both the answer correctness and the classification result, the BKT API calculates the updated
knowledge mastery probability, which is then reflected in the BKT-Q prototype module.
The assessment concludes once the student’s knowledge mastery probability reaches the
predefined threshold.

The Moodle LMS prototype modules and the BKT API are available upon request.

5.4 In situ experimental guidelines

Subsection 5.4.1 provides insights into SP and adaptive formative assessments, while sub-
section 5.4.2 presents the results of a usability study on the student learning experience and
the programming environments used in formative assessments.

5.4.1 Self-practice and adaptive formative assessment

The enhanced BKT models for cognitive modelling proposed in this thesis were developed
using data from a large sample of undergraduate students. This subsection further explored
the relationship between the CE and SP assessments completed a day before the labora-
tory exercises. Understanding this relationship provided insights that could inform future
research on formative assessment strategies.

The correlation between CE and SP assessment results was examined using the Pearson
r correlation measure and the corresponding p-value (Table 5.5).
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Table 5.5. The relationship between SP and CE formative assessments.

The results demonstrated positive correlations between CE and SP grades across all
DKCs. Several DKCs exhibited moderately strong correlations (e.g., DKC_21 and DKC_23)
and very strong correlations (e.g., DKC_07 and DKC_17), while other DKCs showed strong
correlations.

The average grades for CE assessments were consistently higher than those for SP as-
sessments, suggesting that the SP assessments were generally more challenging.

A potential limitation in addressing the cold start problem of BKT model fitting using
SP assessments lies in the contextual differences between SP and CE environments. The
practice strategies specific to the SP context may not directly apply to the CE. However, the
SP data can serve as a valuable proxy for assessing students’ prior knowledge within the
CE framework. Future research should consider hybrid models that integrate data from both
contexts to improve model accuracy and student performance predictions.

In addition, the results of the adaptive formative assessments used to test the Moodle
LMS prototype modules were observed. The four CE adaptive assessments (DKC 18 Lists -
Basic 22/23 CE, DKC 20 Sorting algorithm CE, DKC 22 Files - Basic 22/23 CE, and DKC 24
Files including Lists CE) were fitted using data from the earlier experimenting or the related
SP assessments. The vanilla BKT model and the enhanced BKT modelling were examined.
Table 5.6 presents the descriptive statistics of the results related to the number of answer
opportunities each student reached in the adaptive assessment. The statistics included the
mean (%), Standard Deviation (SD), median (%), minimum (%) and maximum (%) values
of answer opportunities, and the number of students that achieved knowledge mastery (#
Mastery achieved).
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Table 5.6. Adaptive formative assessments – the central tendency and dispersion measures.

DKC 20 Sorting Algorithm CE G1-G2 resulted in the highest number of students reach-
ing knowledge mastery at 81%, while DKC 24 Files CE G3-G5 referred to the lowest 32%.
Median answer opportunities ranged from 6.5 to 19, with the highest variability in DKC 20
Sorting Algorithm CE G3-G5. The BKT probabilities align with these trends, with the high-
est mean of the knowledge mastery probability in DKC 24 Files including Lists CE G1-G2
(0.81) and the lowest in the G3-G5 (0.52).

From the student’s perspective, the adaptive assessments primarily demonstrated the idea
of time efficiency in the adaptive assessment. Based on the overall learning experience,
students participated in the usability study.

5.4.2 Usability study

At the end of the semester, a usability study was conducted to assess students’ experiences
with formative assessments and the related environment. The study employed an anonymous
questionnaire via Google Forms, consisting of various questions and responses on a 7-point
Likert scale. The questionnaire gathered general student information, experiences with SP
and CE assessments (Appendix F), and feedback on using the VPL-based assessment envi-
ronment within Moodle LMS (Appendix G). For the latter case, the System Usability Scale
(SUS) [129, 130] was applied, a widely recognized instrument for assessing software prod-
uct usability [131]. The SUS score was derived from responses to a ten-item questionnaire
based on a 5-point Likert scale.

A total of 91 students participated in the usability study. Regarding self-evaluation com-
puter skills, 66% of students reported above-average digital literacy, and 89% indicated
above-average experience with e-learning systems like Moodle LMS. However, 47% of
students reported no prior experience with basic programming concepts, and 60% had no
experience with Python.

In terms of learning materials used for self-study, 65% of students reported using weekly
assessments, 64% relied on presentations from laboratory exercises, 56% watched lecture
videos, 56% watched videos from laboratory exercises, 48% referred to the course book,
44% used lecture presentations, 33% utilized personal notes from laboratory exercises, 25%
referred to personal lecture notes and 22% reported using other sources.
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Regarding weekly self-study time, 14.3% of students reported spending more than 6
hours per week, 39.6% indicated they did not study on their own, and 46.1% reported study-
ing less than 6 hours per week.

The percentage of over-average answers on the 5-point Likert scale (points 3 to 5) was
analysed for the SP formative assessments. Overall, 90% of students reported feeling com-
fortable during the assessments, 85% acknowledged a positive impact on their learning per-
formance, and 78% indicated that the assessments helped them improve their knowledge of
basic programming concepts. Additionally, 90% of students recommended the continued use
of these assessments in the course, while 69% suggested using shorter adaptive assessments.
Furthermore, 93% of students supported using bonus points based on assessment results, and
74% favoured scheduling assessments one day before laboratory exercises.

In response to the timing of the SP assessments, 49.4% of students preferred not to limit
the time for completing the tests, suggesting an entire week until the following laboratory
exercises. Meanwhile, 28.6% of students chose a day before the laboratory exercises and
22% preferred two days before.

A similar analysis was conducted for the CE assessments, showing that 86% of students
(a -4% decrease compared to SP assessments) reported feeling comfortable during the as-
sessments. Additionally, 87% of students (a +2% increase) agreed on the positive impact
on their learning performance, and 84% (a +6% increase) reported improved knowledge of
basic programming concepts. 91% of students (a +1% increase) recommended using the
assessments in the course, while 76% of students (a +7% increase) suggested using shorter
adaptive assessments. Furthermore, 95% of students (a +2% increase) supported using bonus
points based on CE assessment performance.

Regarding the VPL-based assessment environment within Moodle LMS, the SUS score
of 77.17033 significantly exceeded the industry standard threshold of 68. This result con-
firmed the robust usability of the approach and highlighted its user-centric design.
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6 CONCLUSION

While enhanced BKT models demonstrated strong predictive capabilities, further research
was needed to fully understand their potential in estimating knowledge mastery across a
broader range of educational domains. This gap was particularly evident in areas like intro-
ductory programming, where studies remained scarce. This doctoral thesis proposed a novel
approach for adaptive formative assessment through enhanced BKT modelling and intro-
duced a framework for model ranking based on student performance prediction, knowledge
mastery estimation, and model convergence.

The study successfully demonstrated the feasibility of using BKT models to track stu-
dent knowledge by incorporating the features of time spent on task and the number of code
evaluations. These features proved significant for student modelling in the introductory pro-
gramming course and were effectively integrated into BKT-based cognitive models.

Student performance prediction was improved by using the enhanced BKT models,
which included time and evaluation data. These models outperformed the baseline vanilla
BKT model in predicting student performance across multiple Domain Knowledge Compo-
nents (DKCs). The enhanced models achieved lower RMSE and higher AUC scores, both of
which were statistically significant, indicating more accurate predictions of student perfor-
mance.

The study also showed that enhanced BKT models outperformed the vanilla BKT model
in estimating students’ knowledge mastery. This was evident from higher Pearson correla-
tion coefficients and F1 scores, showing that the enhanced models provided a more precise
assessment of how well students had mastered the concept.

The enhanced BKT models, particularly those incorporating features such as time spent
on task and the number of code evaluations, provided more effective and reliable paths to
knowledge mastery than the baseline BKT model. Faster model convergence indicated a
reduced number of answer opportunities were required for students to achieve knowledge
mastery. This efficiency underscored the practical advantages of enhanced BKT models in
adaptive learning systems, their applicability to real-time formative assessments, and their
ability to enhance student engagement and educational outcomes.

The research results supported the development of a framework for ranking BKT models
based on their capacity to predict student performance, estimate knowledge mastery, and
model efficient learning paths.
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Chapter 6: CONCLUSION

This thesis made the following scientific contributions:

• A novel approach for adaptive formative assessment in the programming domain, en-
hancing the baseline Bayesian Knowledge Tracing model by incorporating time spent
on task and the number of code evaluations

The integration of the proposed features provided a more fine-grained understanding
of a student’s progress and engagement. The enhanced BKT models improved the
performance results of the vanilla BKT model.

• A framework for ranking BKT model variants based on their ability to predict student
performance and estimate knowledge mastery effectively

This framework offered a systematic approach to identifying and selecting the most
effective BKT models, ensuring more accurate assessments compared to the vanilla
BKT model.

An additional result of this research, though not considered a scientific contribution, is:

• A publicly available dataset developed for formative assessment within the Introduc-
tory Programming course, encompassing features related to the time spent on task and
the number of code evaluations.

Future research should address certain limitations of in situ experimental settings and ex-
plore extensions to the proposed approach. Specifically, the accuracy of the time on task fea-
ture requires improvement and additional features, such as the number of code runs, should
be investigated. Moreover, incorporating new data sources, such as self-practice assessments,
could further enhance model accuracy and robustness. Regarding the proposed model eval-
uation approach, the slightly lower performance compared to cross-validation suggests po-
tential overfitting, highlighting the need for further model tuning and a more diverse dataset
to improve generalization. Additionally, alternative evaluation methods for limited datasets
should be explored (e.g., bootstrapping, a resampling technique that leverages the original
dataset).

In conclusion, both the BKT model ranking framework and usability study results in-
dicated that the enhanced BKT models provided a more refined understanding of student
knowledge mastery. These models showed improved cognitive modelling capabilities and
represented more effective choices for predicting student performance and mastery. Addi-
tionally, integrating these advanced BKT models into LMS can enhance their adaptive and
predictive functionalities and provide more personalized learning experiences. The publicly
available dataset for formative assessment in the programming domain, encompassing fea-
tures such as time spent on task and the number of code evaluations, represents a valuable
contribution to the field, supporting further advancements in educational data science.
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[1] I. Šarić Grgić, A. Grubišić and A. Gašpar, Twenty-Five Years of Bayesian knowledge
tracing: a systematic review, User Modeling and User-Adapted Interaction, 2024.

[2] K. Zhang and Y. Yao, A three learning states Bayesian knowledge tracing model,
Knowledge Based Systems, 148, 189–201, 2018.

[3] M. Yudelson, K. Koedinger and G. Gordon, Individualized Bayesian Knowledge Trac-
ing Models, H. Lane, K. Yacef, J. Mostow and P. Pavlik, editors, Artificial Intelligence
in Education, Lecture Notes in Computer Science, 171–180, Springer Berlin Heidel-
berg, 2013.

[4] Overview of the Moodle question engine - MoodleDocs
https://docs.moodle.org/dev/Overview_of_the_moodle_question_engine Accessed
on 2024-11-04.

[5] Moodle Plugins directory: Virtual Programming Lab
https://moodle.org/plugins/mod_vpl Accessed on 2024-11-03, Jun. 2024.

[6] Moodle Plugins directory: VPL Question https://moodle.org/plugins/qtype_vplquestion
Accessed on 2024-11-04, Apr. 2024.

[7] R. Baker, Data Mining for Education., International Encyclopedia of Education (3rd
edition). McGaw, B., Peterson, P., Baker, E. (Eds.), Oxford, UK: Elsevier., 2010.

[8] R. Baker and P. Inventado, Educational Data Mining and Learning Analytics, J. Larus-
son and B. White, editors, Learning Analytics: From Research to Practice, 61–75,
Springer, New York, NY, 2014.

[9] A. Corbett and J. R. Anderson, Knowledge tracing: Modeling the acquisition of proce-
dural knowledge, User Modeling and User-Adapted Interaction, 4, 4, 253–278, 1995.
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Table B1. Student performance prediction – DKC 01.
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Answer opportunities analysis – DKC 01-DKC 25
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Table D1. Answer opportunities analysis – DKC 01.

Table D2. Answer opportunities analysis – DKC 02.

Table D3. Answer opportunities analysis – DKC 03.
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Table D4. Answer opportunities analysis – DKC 04.

Table D5. Answer opportunities analysis – DKC 05.

Table D6. Answer opportunities analysis – DKC 06.
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Table D7. Answer opportunities analysis – DKC 07.

Table D8. Answer opportunities analysis – DKC 08.

Table D9. Answer opportunities analysis – DKC 09.
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Table D10. Answer opportunities analysis – DKC 10.

Table D11. Answer opportunities analysis – DKC 11.

Table D12. Answer opportunities analysis – DKC 12.
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Table D13. Answer opportunities analysis – DKC 13.

Table D14. Answer opportunities analysis – DKC 14.

Table D15. Answer opportunities analysis – DKC 15.
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Table D16. Answer opportunities analysis – DKC 16.

Table D17. Answer opportunities analysis – DKC 17.

Table D18. Answer opportunities analysis – DKC 19.
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Table D19. Answer opportunities analysis – DKC 21.

Table D20. Answer opportunities analysis – DKC 23.

Table D21. Answer opportunities analysis – DKC 25.
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BKT model ranking (normalised features, KM estimation based on the testing subset) - DKC
01-DKC 25
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APPENDIX F

Learning experience questionnaire used for Self-Practice and Controlled Environment for-
mative assessments
Please evaluate your learning experience using a scale from 1 to 7:

1. I do not feel comfortable during
the formative assessments.

1 2 3 4 5 6 7 I feel comfortable during the forma-
tive assessments.

2. I feel that the formative assess-
ments had a negative impact on my
learning performance.

1 2 3 4 5 6 7 I feel that the formative assessments
had a positive impact on my learning
performance.

3. I feel that the formative assess-
ments have not helped me to im-
prove my knowledge of basic pro-
gramming concepts.

1 2 3 4 5 6 7 I feel that the formative assess-
ments have helped me to improve
my knowledge of basic program-
ming concepts.

4. I would not recommend using for-
mative assessments in the course.

1 2 3 4 5 6 7 I would recommend using formative
assessments in the course.

5. I would not recommend using
adaptive formative assessments that
last shorter.

1 2 3 4 5 6 7 I would recommend using adap-
tive formative assessments that last
shorter.

6. I would not recommend using
bonus points in the course based on
formative assessments.

1 2 3 4 5 6 7 I would recommend using bonus
points in the course based on forma-
tive assessments.

7. I would not recommend using
self-practice formative assessments
one day before laboratory exercises.

1 2 3 4 5 6 7 I would recommend using self-
practice formative assessments one
day before laboratory exercises.
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System Usability Scale (SUS) questionnaire

Please evaluate the formative assessment programming environment using a scale from 1 to
5:
1. I think that I would like to use the formative assessment programming envi-
ronment frequently.

1 2 3 4 5

2. I found the formative assessment programming environment unnecessarily
complex.

1 2 3 4 5

3. I thought the formative assessment programming environment was easy to
use.

1 2 3 4 5

4. I think I would need a technical person’s support to use this formative as-
sessment programming environment.

1 2 3 4 5

5. I found the various functions in this formative assessment programming
environment were well integrated.

1 2 3 4 5

6. I thought there was too much inconsistency in this formative assessment
programming environment.

1 2 3 4 5

7. I would imagine that most people would learn to use this formative assess-
ment programming environment very quickly.

1 2 3 4 5

8. I found the formative assessment programming environment very cumber-
some to use.

1 2 3 4 5

9. I felt very confident using the formative assessment programming environ-
ment.

1 2 3 4 5

10. I needed to learn many things before I could get going with this formative
assessment programming environment.

1 2 3 4 5
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