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1. Introduction

Geometric modeling plays important part in computational engineering applications, such as
Computed-Aided Design (CAD), Computed-Aided Manufacturing (CAM) and Computed-Aided

Engineering (CAE). Geometric model is obtained using some geometric modeling software
where new object is defined, or by parameterizing some existing engineering object through
reverse engineering process which is main focus of this paper. Reverse engineering, in context
of CAD, is a process of obtaining geometric and physical representation of given object using
CAD technologies. In first step of geometric representation, descriptive data of a object is ob-
tained with scanning of a object. Scanned data is given in a form of Point Cloud (PC), which
is basically set of triangulated points of scanned object. PC in some cases can contain very
large set of points, depending on the scanner resolution, and sometimes highly dense and noisy
data which sometimes require additional filtering of segmentation [1, 2]. PC of scanned ob-
ject contains points coordinates and their triangulation, which is not applicable for any slightly
advanced numerical procedure. Therefore, given data need to be represented with proper ge-
ometric and shape parameters for establishing representative and functional geometric object
[3]. Resulting set of parameters needs to be compact and minimal, but sufficient enough to
represent initial PC. Achieving this parameterization often includes sets of highly nonlinear nu-
merical and optimization procedures.
Second step is choice of adequate parametric model for data description and shape optimization.
The choice of parametric model is arbitrary, but in certain cases some model shape variables
can be insufficient or lead to high dimensionality of design space [3]. This can lead to many
discontinuities or numerical problems. Mostly, choice of parametric model is a matter of ex-
pertise. After defining the model, next step is to fit data with given model. Fitting can be done
either by approximation or interpolation. Approximation is mostly used, because interpola-
tion requires much higher number of shape parameters. This leads to highly time consuming,
computationally expensive procedures and possible discontinuities of the model. In that case,
relatively "cheaper" approximation is used which results with satisfying fit.
With fitting, parametric model is obtained but it can be further enhanced [3]. Certain geometric
features (edges, peaks, etc.) can be extracted from PC and refitted, because features usually
represent locations with higher geometric error, i.e. distance between fitted model and input
data. Features are extracted using some statistical based methods [4] and shape parameters are
usually densely positioned around them to minimize error.

This procedure allows to perform of shape synthesis of initial PC data into finite geometric
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(a) 3D geometric parameterization of portion
of small cylinder head.

(b) 3D geometric parameterisation of
formula-student body shell.

Figure 1.1: Examples of geometric parameterisations of engineering objects [3].

CAD model, which is a tool of some geometric modeling software. Obtained CAD model can
than be manufactured again or used for some geometric or numerical analysis. Further on, it
can be enhanced or modified through some numerical analysis as FEA or CFD, depending on
the excellence criteria of the desired application.

Figure 1.2: Changing initial shape toward desired criteria [3].

In this paper, parametric models and optimization procedures required for defining CAD model
will be discussed. Standard CAD parametric models will be defined, along with some advanced,
adaptive models. Fitting procedures and algorithms regarding given parametric models will also
be described. Standard CAD models along with geometric algorithms required for definition
of advanced parametric models are addressed in Chapter 2. Fitting procedures of standard and
advanced parametric models are explained in Chapter 3 and Chapter 4, respectively.
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2. Parametric Curves and Surfaces

In CAD technologies, relatively complex geometric data sets which cannot be described with
some established mathematical functions (lines, circles, cylinders, spheres, etc.) require proper
geometrical parameterization. For any set of geometric data points, shape parameterization
can be achieved with piecewise polynomial parametric models. This chapter provides detailed
description of these models, such as de facto standard parametric models (Bèzier, B-Spline
and NURBS) and some advanced, adaptive parametric models based on standard B-Spline or
NURBS. Also, fundamental geometric algorithms for manipulation of standard models are ex-
plained. These algorithms make necessary contribution for establishing adaptive models as
T-Splines or hierarchical B-Splines.

2.1. Standard Parametric Curves and Surfaces

2.1.1. Bèzier Curve and Surface

One of the first polynomial parametric curves, introduced by Pierre Bèzier [5], is Bèzier curve,
named after him.
An n-th degree Bèzier curve is defined by [6]

C(u) =
n

∑
i=0

Bi,n(u)Qi, (2.1)

where u is parametric value, usually defined as 0 ≤ u ≤ 1. Notation of parametric value as
0 ≤ u ≤ 1 will be used throughout this paper. The basis or blending functions Bi,n are standard
n-th degree Bernstein polynomials, introduced by S. Bernstein [7], and geometric coefficients
denoted as Qi are called control points (in most literature, control points are denoted as Pi, but
in this paper mostly Qi notation will be used).
Bernstein polynomials are defined explicitly as [6, 8]

Bi,n =

(
n
i

)
ui (1−u)n−i =

n!
i!(n− i)!

ui (1−u)n−i . (2.2)

Polygon formed by control points {Qi} is called control polygon, which approximates the final
shape of the curve.
Basis functions determines the geometric characteristics of the curve with its properties [6]. In
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Figure 2.1: Bernstein polynomials and Bèzier curve with degree n = 3.

this case, properties of Bernstein polynomials are:

PB1. Non-negativity: Bi,n ≥ 0, for all i,n and for any u ∈ [0,1].

PB2. Partition of Unity (PoU): ∑
n
i=0 Bi,n = 1 for any u ∈ [0,1].

PB3. For u = 0 and u = 1, it is valid that B0,n(0) = Bn,n(1) = 1.

PB4. Bi,n attains one minimum in u ∈ [0,1] and that is at u = i/n.

PB5. Symmetry: for any number of basis functions n, set of Bi,n(u) is symmetric with respect
to parametric value u = 1/2.

Properties of Bèzier curve defined with Bernstein polynomials are [6, 8]:

PC1. Degree of curve is defined by n+1 control points.

PC2. Curve passes through first and last control point, Q0 = C(0) and Qn = Q(1).

PC3. Endpoint (u= 0 and u= 1) tangent directions of the curve are parallel to directions of first
two and last two control points polygon, i.e. C′(0) = Q1 −Q0 and C′(1) = Qn −Qn−1.

PC4. Convex hull property: curve is contained inside convex hull defined by control points
polygon.

PC5. Variation diminishing property: no straight line intersects the curve more times than it
intersects the control polygon.

PC6. Affine invariance: curve is invariant to affine transformations (translations, rotations, scal-
ing, ...), i.e. affine transformations to the curve can be applied by applying it to the control
points.

PC7. Changing the position of any control point Qi changes the global picture of the curve,
which corresponds to the non-negativity property of Bernstein polynomials
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Most of the basis function and curve properties can be observed on Fig. 2.1.
Bernstein polynomials derivation is defined as

B′
i,n(u) =

dBi,n(u)
du

= n(Bi−1,n−1(u)−Bi,n−1(u)) , (2.3)

from which expression Bèzier curve derivative can be obtained

C′(u) =
n

∑
i=0

B′
i,nQi = n

n

∑
i=0

Bi,n−1(u)(Qi+1 −Qi) . (2.4)

Surface is vector-valued function of two parameters, u and v, and represents mapping of
region in (u,v) parametric plane into 3D Euclidean space [6]. Surfaces are mostly defined in
tensor product scheme. Basis functions are bivariate functions of u and v, obtained by tensor
product of univariate basis functions. Therefore, Bèzier surface is represented as tensor product
of univariate Bernstein polynomials Bi,n(u) and B j,m(v) (Fig. 2.2a), multiplied with grid of
control points Qi, j, i.e. control net [9] (Fig. 2.2b).

S(u,v) =
n

∑
i=0

m

∑
j=0

Bi,n(u)B j,m(v)Qi, j, (2.5)

where parametric values are mostly defined as 0 ≤ u,v,≤ 1. Control net Qi, j is given as

Qi, j =


Q0,0 · · · Q0,m
...

. . .
...

Qn,0 · · · Qn,m

 ∈ R3(n+1)×(m+1). (2.6)

0.00.20.40.60.81.0 u
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Figure 2.2: (a) Bèzier tensor product of cubic B2,3(u) and quadratic B1,2(v) basis functions,
(b) example of tensor product Bèzier surface with control net.
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2.1.2. The de Casteljau Algorithm

When it’s necessary to determine the value of Bèzier curve C(u), widely used and numerically
stable algorithm is de Casteljau algorithm. Algorithm is using recursive linear operator which
subdivides control polygon in a ratio defined by parametric value u [8]. Main idea is to split
every polygon leg in ratio u : (1− u) which creates new polygon. Procedure is repeated n− 1
times until last (n−1) polygon intersects curve, which is wanted value C(u) [10]. Subdivision
points Qr

i are usually evaluated by recursive affine combinations

Qr−1
i (1−u)+Qr−1

i+1 (u) = Qr
i . (2.7)

Given algorithm can be arranged in triangular scheme as

Q0
0

Q0
1 Q1

0
...

...
. . .

Q0
n Q1

n−1 · · · Qn
0 = Q(u)

(2.8)

Last polygon leg value for a given parametric coordinate u results with wanted curve evaluation
C(u) = Qn

0. In this manner, any point on a curve C(u) can be evaluated and thus entire curve
can be obtained.

0 1 2 3 4 5 6
x

0
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2

3

4

y

Q0
0

Q0
1 Q0

2

Q0
3

Q1
0

Q1
1

Q1
2

Q2
0 Q2

1Q3
0

Figure 2.3: De Casteljau algorithm for cubic Bèzier at u = 1/2.

On Fig. 2.3 de Casteljau algorithm is presented for cubic Bèzier where final control point Q3
0

represents parametric curve value C(1/2) = [Cx(1/2),Cy(1/2)].
The de Casteljau algorithm can be utilized in several applications, such as curve/surface subdi-
vision in two or more curves/surfaces without changing the initial geometry. In this way, Bèzier
parameterization enables local influence on desired segments.
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2.1.3. B-Spline Curve and Surface

Bèzier curve is globally defined in entire parametric domain, which means that slightest change
in parameters alters entire curve. Local influence can be obtained through subdivision of curve,
but to avoid this numerically expensive procedure, B-Spline curves was introduced [6]. B-Spline
is defined as piecewise polynomial curve in parametric domain, where the domain consists of
m−1 parametric values 0 ≤ u0 ≤ u1 ≤ ·· · ≤ um+1 ≤ um ≤ 1 called knots ui.
An p-th degree B-Spline curve is defined as [6, 8]

C(u) =
n

∑
i=0

Ni,p(u)Qi, (2.9)

where the parametric value u are mostly defined in u ∈ [0,1], {Qi} is vector of control points
and Ni,p are B-Spline basis functions. Basis functions are defined with Cox-de Boor recursive
formula [11, 12]

Ni,0(u) =

1, if ui ≤ u < ui+1

0, otherwise

Ni,p(u) =
u−ui

ui+p −ui
Ni,p−1(u)+

ui+p+1 −u
ui+p+1 −ui+1

Ni+1,p−1(u).

(2.10)

Visual example of Cox-de Boor recurrence can be seen on Fig. 2.4, where is shown how a
cubic polynomial is constructed recursively from zeroth polynomial, with equivalent triangular
scheme on Fig. 2.5.
First use of Cox-de Boor recurrence equation was by Gordon and Riesenfeld [13], where it
was used to define parametric B-Spline curve. Ever since, it’s most popular way of defining
B-Spline basis functions. Alternative ways of defining basis function are described closely by
de Boor in [14]. B-Spline basis function can be evaluated with de Boor algorithm [12], which
is using Cox-de Boor recurrence equation (Eq. 2.10) and only nonzero values are taken into
account. It’s derived from de Casteljau algorithm into more general approach to locally defined
basis functions.
Knot vector {u} is usually defined as

u = {0, ...,0︸   ︷︷   ︸
p+1

,up+1, ...,um−p−1,1, ...,1︸   ︷︷   ︸
p+1

}, (2.11)

where p+1 multiplicity of first and last knot values ensures that B-Spline curve passes through
first and last control point Qi. Knot vector values can be equidistantly spaced or otherwise.
In contrast to Bèzier curve, additional knot vector {ui} increases the number of parameters
required to define parametric curve and with that better parameterization of geometry. On the
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other hand, increase in the number of parameters also increases computational efforts.
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Figure 2.4: Recursive calculation of cubic B-Spline basis function on knot interval
u = {0,0.25,0.5,0.75,1}, from zeroth to third polynomial degree.
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Characteristics of B-Spline basis functions are [6, 8, 14]:

PB1. Ni,p is polynomial function of degree p.

PB2. Local support property: any Ni,p is nonzero in interval [ui,ui+p+1), i.e. Ni,p is only defined
in interval [ui,ui+p+1). This property can be seen on Fig. 2.4 and Fig. 2.5.

PB3. Non-negativity property: Ni,p ≥ 0, for any i, p and u.

PB4. In any arbitrary knot span [ui,ui+1), there is most p + 1 basis functions Ni,p that are
nonzero.

PB5. For any arbitrary knot span [ui,ui+1), ∑
i
j=i−p N j,p = 1 for any u ∈ [ui,ui+1) (PoU).

PB6. For a number of knots m+ 1 and polynomial degree p, there exist n+ 1 basis functions
which satisfy the condition m = n+ p+1.

PB7. Ni,p defined in knot interval [ui,ui+p+1) is p− k continuously differentiable at a knot
values, where k is multiplicity of the knot. Therefore, degree p increases continuity and
increasing knot multiplicity k decreases continuity.

PB8. If some knot ui is multiplied k times, then there is most p− k+1 nonzero basis function
at ui value.

PB9. Derivative of basis function is given by

N′
i,p(u) =

p
ui+p −ui

Ni,p−1(u)+
p

ui+p+1 −ui+1
Ni+1,p−1(u). (2.12)

PB10. Knot vector u={0, · · ·0︸   ︷︷   ︸
p+1

,1, · · ·1︸   ︷︷   ︸
p+1

} gives Bernstein polynomials of degree p. Therefore, with

appropriate knot vector {u}, B-Spline basis functions can represent Bernstein polynomi-
als.

PB11. Ni,p are linearly independent, i.e. they are defining a basis for the vector space of basis
functions.

N

∑
i=0

αiNi,p(u) = 0 for any u ∈�. (2.13)

Eq. 2.13 equals to 0 only if every linear coefficient αi = 0, which defines linear indepen-
dency between basis functions.

Like B-Spline basis functions, characteristics of B-Spline curve are [6, 8]:

PC1. B-Spline curve C(u) is piecewise polynomial curve (because of basis functions), with
the degree p, n+ 1 control points and m+ 1 knots in knot vector. Like B-Spline basis
functions, curve is also defined by relation m = n+ p+1.
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PC2. If n = p and knot vector ui = {0, · · · ,0︸     ︷︷     ︸
p+1

,1, · · · ,1︸     ︷︷     ︸
p+1

}, then B-Spline curve is Bèzier curve.

PC3. Endpoints interpolation, i.e. C(0) = Q0 if u0 = · · · = up = 0 and C(1) = Qn if um−p =

· · ·= um = 1.

PC4. Affine transformations of the curve are applied through the control points.

PC5. Convex hull property: curve is contained inside control polygon convex hull.

PC6. Local modification scheme: modification of Qi only changes curve in the interval
[ui,ui+p+1). Because by Eq. (2.9) every control point has its own basis function which is
nonzero in interval [ui,ui+p+1).

PC7. Control polygon represents piecewise linear approximation of the curve. So with lower
degree of the curve, the curve is better approximation of the control polygon. For p = 1,
control polygon is the curve.

PC8. Variation dimishing property: no straight line intersects the curve more times than it
intersects control polygon.

PC9. Curve is infinitely differentiable for an u value in any knot interval and at least p−k times
continuously differentiable at a knot of k multiplicity.

PC10. Inserting the new knot in knot vector or raising the degree of the curve results with new
control point because of relation m = n+ p+1.

PC11. The kth derivative of B-Spline curve is given by

C(k)(u) =
n

∑
i=0

N(k)
i,p (u)Qi. (2.14)

Calculation of B-Spline curve value is presented in several simplified steps in a Algorithm 2.1
[6, 14]:

Algorithm 2.1 B-Spline curve calculation

• Input parameters: u ∈ u

1. Knot span [ui,ui+1] where the u is located has to be found.

2. For an i-th basis function and p-th degree, Ni,p is calculated with Eq. (2.9.)

3. Ni,p value is multiplied with corresponding control point Qi and added to the sum
of B-Spline curve (Eq. (2.8)).

• Steps 1-3 are repeated for every p+1 nonzero Ni,p in interval [ui,ui+1].

• Output parameter: C(u) for a given u ∈�blu

10
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(a) Knot vector u = {0,0,0,0.2,0.4,0.6,0.8,1,1,1}.
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Figure 2.6: Two quadratic B-Spline curves and its degree basis functions with exact control
points but different knot vectors.

B-Spline surface is obtained through bidirectional net of control points (control net), with
two knot vectors ui and vi and the tensor product of univariate B-Spline basis functions Ni,p

(Fig. 2.7) [6, 8]

S(u,v) =
n

∑
i=0

m

∑
j=0

Ni,p(u)N j,q(v)Qi, j, (2.15)

where the knot vectors are usually defined as

u = {0, ...,0︸   ︷︷   ︸
p+1

,up+1, ...,ur−p−1,1, ...,1︸   ︷︷   ︸
p+1

}, (2.16a)

v = {0, ...,0︸   ︷︷   ︸
q+1

,uq+1, ...,us−q−1,1, ...,1︸   ︷︷   ︸
q+1

}. (2.16b)
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where u has r+1 knots with polynomial degree p and n+1 control points (or basis functions).
Respectively, v has s+1 knots with polynomial degree q and m+1 control points.
B-Spline surface follows same characteristics as B-Spline curve, analogously defined for bivari-
ate parametric domain (u,v).

Figure 2.7: Tensor product of quadratic B-Spline basis functions N2,2(u) and N3,2(v).

2.1.4. NURBS Curve and Surface

B-Spline parameterization offers many possibilities when it comes to geometric modeling, but
due to polynomial basis functions they are unable to represent rational functions and shapes,
such as circles, conic sections or some free-form curves [15, 16]. To overcome this difficulty,
rational B-Spline basis functions were introduced by Versprille in his dissertation [17], and their
use in curves and surface representation was expanded as NURBS (Non-Uniform Rational B-
Spline) curves [15, 16].
A p-th degree NURBS curve is defined as [6, 15, 16]

C(u) =
n

∑
i=0

Ri,p(u)Qi, (2.17)

where Ri,p are piecewise rational B-Spline basis functions defined as

Ri,p(u) =
Ni,p(u)wi

∑
n
j=0 N j,pw j

. (2.18)

In contrast to B-Spline curve, NURBS curve adds more parameters to the curve definition.
These new parameters are defined through weights vector w = {w0, ...,wn}, where each weight
corresponds to one basis function or control point. Weights add more flexibility and degrees of
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freedom in curve modeling and consequently, NURBS model becomes more computationally
expensive and numerically complex.
NURBS curve follows same characteristics as B-Spline curve, described in Sec. 2.1.3, except
one additional remark regarding weights in NURBS curve. When all weights are set to wi = c,
for every i = 0, ...,n and where c is any constant c ∈ � \ {0}, then rational B-Spline basis
functions represent B-Spline basis functions and therefore NURBS curve represents B-Spline
curve. In most applications, weights are wi > 0.
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(a) Weights vector w = {1,1,1,1,1,1,1}.
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(b) Weights vector w = {1,1,1,0.25,1,1,1}.
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(c) Weights vector w = {1,1,1,4,1,1,1}.

Figure 2.8: Quadratic NURBS basis functions and curve with same control points and knot
vector, shown through different weights vector.
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NURBS surface is defined as [6, 15, 16]

S(u,v) =
n

∑
i=0

m

∑
j=0

Ri, j(u,v)Qi, j, (2.19)

where the bivariate rational basis functions are given by

Ri, j(u,v) =
Ni,p(u)N j,q(v)wi, j

∑
n
k=0 ∑

m
l=0 Nk,p(u)Nl,q(v)wk,l

. (2.20)

NURBS surface has same parameters as B-Spline surface (Sec. 2.1.3), with exception of weight
net wi, j defined as

w =


w0,0 · · · w0,m
...

. . .
...

wn,0 · · · wn,m

 ∈ R3(n+1)×(m+1). (2.21)

NURBS surface holds identical characteristics as B-Spline surface and analogously, it can rep-
resent B-Spline surface and therefore Bèzier surface (Fig. 2.9).

Bezier B-Spline NURBS

Figure 2.9: Relation between parametric models.
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2.2. Fundamental Geometric Algorithms

So far mentioned parameterization methods can, in certain cases, produce satisfying parame-
terized geometric models. Sometimes, obtained model can require additional improvements
which can reduce the error or be used in other applications, e.g. refinement or subdivision. In
this chapter, several algorithms will be discussed which are used for parametric model improve-
ments. Similarly, these methods can increase or decrease the number of parameters in model
and thus change model complexity and computational efforts.

2.2.1. Knot Insertion Algorithm

NURBS model (B-Spline as well) improvements can be achieved through knot insertion algo-
rithm, which refines initial knot vector and thus adds more parameters to the model (Sec. 2.1.3,
property PB6.). Knot insertion in one of the most important geometric algorithms, because it
can be used for multiple applications such as: adding control points to increase flexibility, sub-
division of the curve/surface, evaluation of curves/surfaces values and derivatives, etc. [6, 18].
Knot insertion algorithm was introduced simultaneously by Cohen et al. [18] and Boehm [19],
where authors in [18] named the algorithm Oslo algorithm while algorithm in [19] has no par-
ticular title. Both algorithms work directly with B-Spline coefficients while Oslo algorithm can
be expanded to the linear system which is defined by basis transformations between refined
spaces, where every approach has its own pros and cons [20]. Both algorithms are derived from
Cox-de Boor algorithm. For simplicity sake, single knot insertion will be closely described in
this paper [21, 6, 8].
Initially, we assume that we have NURBS curve C(u) = ∑

n
i=0 Ni,pQi which is defined on a knot

sequence u = {ui}n+p+1
i=0 . We want to insert knot u in some knot interval

[
u j,u j+1

)
which will

result in new knot sequence û = {ui}n+p+2
i=0 . New NURBS curve can then be formulated as

C(u) =
n

∑
i=0

Ni,pQi =
n+1

∑
i=0

N̂i,p(u)Q̂i, (2.22)

where the system of linear equation is obtained and which is to be solved.

n

∑
i=0

Ni,pQi =
n+1

∑
i=0

N̂i,p(u)Q̂i. (2.23)

For every u ∈
[
u j,u j+1

)
it’s valid

Ni,p(u) = N̂i,p(u), i = 0, · · · , j− p−1,

Ni,p(u) = N̂i+1,p(u), i = j+1, · · · ,n.
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Upper equations and linear independence property of basis functions imply on equalities

Qi = Q̂i, i = 0, ..., j− p−1,

Qi = Q̂i+1, i = j+1, ...,n.
(2.24)

Expanding the Eq. (2.23) yields

Q̂ j−p = Q j−p,

Q̂i = αiQi +(1−αi)Qi−1, j− p+1 ≤ i ≤ j,

Q̂ j+1 = Q j,

(2.25)

where

αi =


1, i ≤ j− p,

ui−ui
ui+p−ui

, j− p+1 ≤ i ≤ j,

0, i ≥ j+1.

(2.26)

Given procedure is mostly based on Boehm method [19]. Single knot procedure can be given
in matrix form as Q̂ = RQ, where R is (n+1)×n transfer matrix [22]

R =



α0 0 0 · · · · · · 0
(1−α1) α1 0 · · · · · · 0

0 (1−α2) α2 · · · · · · 0
...

...
...

. . .
...

...

0 0 0 0 (1−αn−1) αn−1

0 0 0 0 · · · (1−αn)


. (2.27)

Given matrix form is generalization of Oslo algorithm linear system.
When inserting knot who has multiplicity k and needs to be inserted r times (k+ r ≤ p, because
it’s not practical to have knots of multiplicity greater than p), then new control points Q̂i,r are
given as [6]

Q̂i,r = αi,rQ̂i,r−1 +(1−αi,r)Q̂i−1,r−1, (2.28)

where

αi,r =


1, i ≤ j− p+ r−1,

ui−ui
ui+p−r+1−ui

, j− p+ r ≤ i ≤ j− k,

0, i ≥ j− k+1.

(2.29)

Eq. (2.29-2.28) actually represents Eq. (2.25-2.26) repeated in a loop r times. Knot refinement
is algorithm when multiple knots have to be inserted at the same time. Knot refinement can be
solved using Oslo algorithm [18] where linear system has to be solved or inserting one knot
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at a time following the procedure above. Basically, knot refinement is generalization of knot
insertion algorithm. Regarding the NURBS surface, best way is to insert new knots is one knot
at a time per parametric axes.

2.2.2. Knot Removal Algorithm

Knot removal is the reverse algorithm of knot insertion algorithm. First major use of knot
removal was as a reduction of parameters [23, 24], but slightly later it was developed further
as a tool for many applications, such as: degree reduction, converting the B-Spline segments to
Bèzier patches and vice versa, etc. [25, 6].
Idea is to represent a given NURBS curve with new knot vector û which is obtained when the
knot ur (r is index of the knot in knot vector) of multiplicity k is removed t times (1 ≤ t ≤ k).

C(u) =
n

∑
i=0

Ni,pQi =
n−t

∑
i=0

N̂i,pQ̂i. (2.30)

For the start, knot removal algorithm must determine is the knot ur removable and if it is, how
many times. From that, algorithm must compute new control points Q̂i [6]. If a knot can be
removed t times, curve must be Cp−t continuous. Basically, if a knot ur is to be removed t

times, equations are set like the knot ur is to be inserted t times (knot insertion algorithm for
knot ur, t times). Obtained set of equations is then solved backwards, starting from the last
to the first. For the n = p− k+ 1, where the k is multiplicity of the knot to be removed, knot
removal produces n equations in n−1 unknowns and destroys n control points, replacing them
with n−1 new control points [25].
General algorithm for removing the knot ur t times, where 1 ≤ t ≤ k [25].

Algorithm 2.2 Knot removal of knot ur t times
Initialize:

f irst = r− p+1; last = r− k−1;
for iter = 1, ..., t do

f irst = f irst −1; last = last +1;
i = f irst; j = last
while j− i ≥ iter−1 do

Q̂iter
i =

Q̂iter−1
i −(1−αi)Q̂iter

i−1
αi

,

Q̂iter
j =

Q̂iter−1
j −(1−α j)Q̂iter

j+1
1−α j

,

where αi =
ut−ui

ui+p+iter−ui
; α j =

ut−u j−iter+1
u j+p+1−u j−iter+1

;

i = i+1; j = j−1;
end while

end for

Given algorithm decrements multiplicity k and knot position index r with each iteration
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(each iteration removes knot one time), and accounts the gap in knot vector and control points
sequence due to knot removal.

2.2.3. Degree Elevation Algorithm

Basic steps of degree elevation algorithm are decomposition of NURBS curve into Bèzier seg-
ments, degree elevation of Bèzier segments and knot removal of unnecessary knots to form
NURBS representation of the curve. When we have multiple curves which are used to con-
struct one surface or NURBS curve, then some of the curves require degree elevation so that all
curves have common degree [6]. When elevating the degree of NURBS curve Cp(u) from p to
p+1, there must exist control points Q̂i and knot vector û such that [6]

Cp(u) = Cp+1(u),
n

∑
i=0

Ni,p(u)Qi =
n̂

∑
i=0

Ni,p+1(u)Q̂i.
(2.31)

In Eq. (2.31) there are three unknowns, n̂, û and {Q̂i}. To determine n̂ and û, it’s assumed that
knot vector has the form

u = {u0, ...,um}= {0, ...,0︸   ︷︷   ︸
p+1

,u1, ...,u1︸      ︷︷      ︸
k1

, ....,us, ...,us︸     ︷︷     ︸
ks

,1, ...,1︸   ︷︷   ︸},
where k1, ...,ks denotes multiplicity of interior knots (s is the number of interior knots). At a
knot ui of multiplicity k curve is p− ki continuous, which states that elevated curve Cp+1(u)

must have same continuity. From there, same knot must have ki +1 continuity, which yields

n̂ = n+ s+1, (2.32a)

û = {u0, ...,um̂}= {0, ...,0︸   ︷︷   ︸
p+2

,u1, ...,u1︸      ︷︷      ︸
k1+1

, ...,us, ...,us︸     ︷︷     ︸
ks+1

,1, ...,1︸   ︷︷   ︸
p+2

}, (2.32b)

where the number of knots is now m̂ = m+ s+2. With n̂ and û defined, control points {Q̂i} is
obtained from system of linear equations

n

∑
i=0

Ni,pQi =
n̂

∑
i=0

Ni,p+1Q̂i. (2.33)

Evaluating Ni,p(u) and Ni,p+1(u) at suitable n̂+1 values yields system of n̂+1 linear equations
where unknowns are {Q̂i}. This method presents basic procedure to elevate degree, but some-
what inefficient. Prautzsch and Piper [26, 27] presented complex but more efficient method
where new knots are inserted (based on Eq. 2.32b) and in combination with knot insertion algo-
rithm, new control points are obtained. So far, given algorithms raise the degree by one, p+1.
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In paper [28], Piegl and Tiller developed simpler algorithm in which degree can be raised by
any degree (p+ r, r ≥ 1).

2.2.4. Degree Reduction Algorithm

Main application of degree reduction is to reverse degree elevation algorithm [6]. Let there be
defined NURBS curve C(u) = ∑

n
i=0 Ni,p(u)Qi on a knot vector

u = {0, ...,0︸   ︷︷   ︸
p+1

,u1, ...,u1︸      ︷︷      ︸
k1

, ....,us, ...,us︸     ︷︷     ︸
ks

,1, ...,1︸   ︷︷   ︸
p+1

}.

Curve C(u) is degree reducible if it can be presented in a form

Cp(u) = Cp−1(u),
n

∑
i=0

Ni,p(u)Qi =
n̂

∑
i=0

Ni,p−1Q̂i,
(2.34)

on the knot vector
û = {0, ...,0︸   ︷︷   ︸

p

,u1, ...,u1︸      ︷︷      ︸
k1−1

, ....,us, ...,us︸     ︷︷     ︸
ks−1

,1, ...,1︸   ︷︷   ︸
p

}. (2.35)

with n̂ = n−s−1. It is evident that ki can be ki = 1, which implies that knot ui is not in vector û
and that knot ui was removed from C(u). Elevation of a curve degree always possible, but curve
may not be a degree reducible. Just like at knot removal, problem can be over-determined, i.e. it
can produce more equations than unknowns Q̂i. Because of floating point error, obtained curve
Ĉ(u) may not always coincide with C(u), and therefore some error must be accounted [6]

E(u) = ∥C(u)− Ĉ(u)∥ ≤ TOL. (2.36)

Most notable algorithm is defined by Piegl and Tiller [29], which is extension of paper [28] by
the same authors with distinction of degree reduction. Briefly, NURBS curve is decomposed
into Bèzier segments, then for each segment degree is reduced and unnecessary knots are re-
moved to form NURBS representation. After decomposition in Bèzier segments, knot removal
algorithm is applied to reduce the degree of each segment and finally to merge segments into
NURBS representation. Depending on degree parity, approximation errors terms are derived in
both steps of knot removal, first for Bèzier segments degree reduction and second for removal of
excess knots to unify segments for NURBS representation. Later, Wolters et al. [30] developed
an algorithm that works with NURBS directly. Curve is represented in blossom form (based on
de Boor algorithm), from which equations are obtained and solved using least squares approach.
Finally, with weighting scheme unknown coefficients are obtained. Following the optimization
scheme, Yong at al. [31] also reduced the problem to constrained optimization. Using the conti-
nuity property of NURBS curve (Sec. 2.1.3, property PB7.), NURBS derivatives were evaluated
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using B divided differences and where unknowns Q̂i are obtained through constrained optimiza-
tion.

2.3. Advanced Parametric Curves and Surfaces

In this chapter curves and surfaces defined with multiple level domains or locally defined do-
mains will be discussed. Their common thing is that they are defined by two or more tensor
products of basis functions in domains.

2.3.1. Hierarchical B-Spline

So far discussed, NURBS theory together with B-Spline and Bèzier provides sufficient degrees
of freedom regarding parametric modeling. But in certain cases, additional finer control of
some regions is required. This is achieved with knot refinement, which gives more local control
to desired areas. B-Spline (or NURBS) refinement was first introduced by Forsey and Bartels
[32] where authors presented adaptive refinement procedure for one or more basis functions
in initial domain. Using only knot refinement would result with new global knot vector, but
the idea was to keep the refinement in desired areas. To keep changes only in desired areas,
authors introduced hierarchical overlays where every new refined area was considered as new
hierarchical domain, keeping the changes strictly localized. Later, with adaptive hierarchical
refinement, Kraft [33, 34] defined multilevel hierarchical spline space as linear span of tensor
product B-Splines defined on different grids of knots mesh.
Let {V l}l=0,...,N−1 be a sequence of N nested tensor-product spline spaces so that V l ⊂ V l+1.
The index l of a space V l is defined as its level in hierarchy and N is depth of hierarchy. Each
spline space V l is spanned by tensor product of B-Spline basis Bl , defined on one (univari-
ate B-Spline) knot sequence or on two (bivariate B-Spline) knot sequences {ul

i}i=0,...,p(l) and
{vl

i}i=0,...,q(l), where p and q denotes polynomial degree per each parametric axis. As a result,
every space V l has its corresponding knot grid [35, 36]

Gl = {(ul
i−1,u

l
i)× (vl

i−1,v
l
i) : i = 1, ..., p(l), j = 1, ...,q(l)}.

New level spline space V l+1 grid is obtained with iterative refinement of knots (frequently
dyadic knot insertion algorithm, Sec. 2.2.1), where the old knot grid is kept and refined with
new knots in the middle of old knots as u j = (u j

i + u j
i+1)/2. Refinement over new regions can

be done in several directions as [22]:

• Rectangular (over rectangular regions)

• Linear (along diagonal layer)

• Curvilinear (along curvilinear trajectory)
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(a) Weak condition. (b) Strong condition.

Figure 2.10: Strong and weak condition for bivariate subdomains boundaries [37].
.

Additionally, we consider a sequence of nested subdomains {Ωl}l=0,...,N−1 such that Ωl ⊆ Ωl+1

for l = 1, ...,N−1. Each Ωl represents region to be refined at level l and its boundary ∂Ωl can be
in line with knot grid of spline space V l−1 (strong condition) or in line with knots of V l (weak
condition), which can be seen on Fig. 2.10. [37]. Support of any function f when restricted to
domain Ω0 is

supp f = {(u,v) : f (u,v) , 0∧ (u,v) ∈ Ω
0}.

The term ring, related to domain Rl = Ω0\Ωl+1 was introduced by Giannelli and Jüttler [36].
Ring Rl conceptually represents Ω0 with a hole given by Ωl+1. Rl consists of cells given by
tensor product grid of level l and its called multi-cell domain. Regarding the difference between
two successive subdomains Ωl\Ωl+1, new sequence of multi-cell domains is defined. Union of
these domains is called multi-grid multi-cell domain (Fig. 2.11).

(a) From left to right: hierarchical mesh, R0 = Ω0\Ω1, R1 = Ω0\Ω2, R2 = Ω0\Ω3.

(b) From left to right: Ω0\Ω1, Ω1\Ω2, Ω2\Ω3

Figure 2.11: Hierarchical mesh defined by restricting the grid V l to Ωl , for l = 0, ...,3, with
rings Rl (a) and differences in Ωl\Ωl+1 (b) [36].
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With given spline spaces V l and B-Spline bases Bl in nested subdomains Ωl with defined
rings Rl , the construction of hierarchical basis (HB) is given in following definition [35]

Definition 1. For a given subdomain hierarchy {Ωl}l=0,...,N−1, hierarchical spline basis H is

recursively constructed as

(I) Initialization:
H0 =

{
β ∈ B0 : supp β , 0

}
,

(II) Recursive construction of Hl+1 :

Hl+1 =Hl+1
A ∪Hl+1

B , for l = 0, ...,N −2,

where

Hl+1
A =

{
β ∈Hl : supp β ⊈Ω

l+1
}
,

Hl+1
B =

{
β ∈ Bl+1 : supp β ⊆ Ω

l+1
}
.

(III) Result:
H=HN−1.

Finally, S = spanH is multilevel spline space defined by subdomain hierarchy {Ωl}l=0,...,N−1.

For initial hierarchy domain Ω0, all basis functions in B0 are selected. Spline hierarchy
is completed by adding basis functions supported in current hierarchy Ωl (Hl+1

A in Def. 1)
and basis function contained in successive hierarchy Ωl+1 (Hl+1

B in Def. 1), which is done
recursively for all levels l = 0, ...,N −2. Basis functions β contained in some arbitrary level Bl

which are present in current Hl are called active functions, while functions not considered in
current level are called passive functions. HB hold most of the B-Spline basis properties, such
as nonegativity and local support [33]. Key properties, from Def. 1 are (see on Fig. 2.12 for
curve and Fig. 2.13 for a surface): [35]

(H1) Linear independence: ∑β∈H dββ = 0 ⇔ dβ = 0,∀β ∈H.

(H2) Non-negativity: ∀β ∈H,β ≥ 0.

(H3) Nested nature of the spline spaces: spanHl ⊆Hl+1 for l = 0, ...,N −2.

Non-negativity property comes directly from definition of B-Spline basis functions (Sec. 2.1.3),
while linear independence and nested nature property are more detailed in [33, 34] and [37],
respectively. Partition of unity (PoU) property is not inherited in HB. Simple way to recover
PoU property is through weighted basis W , discussed in [37]. For every basis function β in
HB space H there is a related weighted basis function ω = wββ from which normalized HB is
obtained as

W =

{
ω = wββ : β ∈H∧ ∑

β∈H
wββ = 1

}
.
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which forms a PoU as ∑ω∈W ω = 1. For some hierarchical configurations, some weights in
refined levels can be zero and thus cancel some contributions. To avoid this, truncated HB can
be used which will be explained in next section.

(a) Knot vectors (left) and subdomain hierarchy (right).

(b) Level 0: B-Spline basis of B0 (left) and hierarchical B-Splines H∩B0 (right).

(c) Level 1: B-Spline basis of B1 (left) and hierarchical B-Splines H∩B1 (right).

(d) Level 2: B-Spline basis of B2 (left) and hierarchical B-Splines H∩B2 (right).

(e) HB basis space H0.

(f) HB basis space H1.

(g) HB basis space H2 =H from Fig. 2.12a subdomain hierarchy.

Figure 2.12: Univariate hierarchical basis of p = 3, with three levels of hierarchy [35]. Figures
(b-d) shows B-Spline basis for each level of knots and its corresponding functions contained in

subdomain hierarchy (a). Figures (e-g) represent HB bases Hl with active functions defined
recursively per each level.
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Univariate HB of three levels, with every basis space Bl and nestedness of subdomain hier-
archies Ωl and HB spaces Hl can be seen on Fig. 2.12 for 2D space and on Fig. 2.13 for 3D
space, together with resulting HB space H2 =H based on subdomain hierarchy.

(a) Subdomain hierarchy Ω. (b) HB basis H0 = B0. (c) Subdomain Ω0.

(d) Subdomains Ω0 and Ω1. (e) HB basis H1
A. (f) HB basis H1

B.

(g) HB basis H2
A. (h) HB basis H2

B. (i) Final HB basis H3 =H.

Figure 2.13: Bivariate HB space with three levels of refinement, with symbolds from Def. 1
[22]. Subdomain hierarchy (a) is shown throughout HB for every hierarchy level (Hl

A ∪Hl
B),

starting from initial domain and bases (b-c), through recursive definition for both levels of
refinement (d-h) until final HB space (i).

With given construction of HB space, HB-Spline surface (curve) can be defined as [21, 22]

S(u,v) =
N−1

∑
l=0

∑
i∈Al

β
l
i(u,v)Q

l
i, (2.37)

where βl
i are B-Spline basis functions and Al is set of active functions per level l.

With further analysis of HB-Spline space, Giannelli and Jüttler [36] analyzed dimensions of

24



HB space to achieve maximum order of smoothness on certain grids, based on strong condition.
Thus, admissible domain configuration was proposed. Similarly, Giannelli at al. [35] introduced
weak and strong stability of hierarchical basis, based on weak and strong condition, where local
refinement can be achieved in a more effective way. Completeness of HB tensor product was
explored by Mokriš et al. [38], where the condition for completeness of hierarchical spline
space was introduced. Given condition guarantees that any piecewise polynomial basis function
can be defined in hierarchical tensor product B-Spline basis. This paper was extension (or
complement) of work in [36]. In order to construct hierarchical data structure, binary tree is
used for 1D problems, quad-tree and octree for two or three dimensions, respectively. For
construction of 3D surface defined in 2D adaptive mesh domain, mostly used is concept of
quad-tree from [39]. Every node or leaf holds information about corresponding knot span and
basis functions in respective hierarchical level. Additionally, each node or leaf contains pointers
to neighboring nodes in considered level which makes it easier to establish relations between
neighboring basis functions (Fig. 2.14).

Figure 2.14: Quad-tree example for given hierarchical subdomain hierarchy [39]. Pointers are
directing to neighboring partitions of desired element (red element) on the same level but on

different leaves of quad-tree.

2.3.2. Truncated Hierarchical B-Spline

Adaptive local refinement can be greatly achieved with HB but they lack one of major proper-
ties, which is PoU. This can be realized with use of normalized basis for refined spline spaces.
HB-Spline construction can be altered with suitable truncation of basis functions in finer levels
of hierarchy. Main idea is to eliminate contributions of basis functions which are included in
finer level. This mechanism preserves PoU and defines smaller support of basis functions. Due
to truncation mechanism, this type of HB is named truncated hierarchical basis (THB) from
which THB-Splines are obtained. First major introduction of THB was by Giannelli at al. [40]
where truncation mechanism on HB was applied and thus spline space which contains all HB
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properties along preservation of PoU was obtained. Also, THB introduced several more ad-
vantages over classical HB. Similar approach has been proposed by Speleers at al. [41], where
authors defined normalized hierarchical basis on Powell-Sabin triangulations. Also, due to in-
creasing popularity of isogeometric analysis (IGA) [42] which initially used standard NURBS
models, authors started implementing adaptively refined models in IGA. Most notably, Vuong
et al. [37] discussed HB application in IGA. This application resulted in more research interest
for adaptive models where further developments (e.g. THB from HB) were achieved.
Like already mentioned, THB model is extension of HB model. With already defined spline
space V l and corresponding B-Spline basis functions space Bl in subdomain hierarchy Ωl (Sec.
2.3.1) hierarchical basis are obtained with Def. 1, where authors in [40] progressed to THB
introduction which mostly relied on following definition [43]

Definition 2. Any B-Spline basis function β ∈ Bl in level l can be expressed as linear combina-

tion of basis functions in finer level l +1 as

τ =
p+1

∑
i=0

cl+1
i β

l+1
i , (2.38)

where τ is B-Spline basis function denoted in THB finer basis V l+1 and cl+1
i are called

subdivision (or refinement) coefficients [44, 45, 46], which can be obtained by knot insertion
algorithm (de Boor algorithm) or as binomial coefficients with equation below

cl+1
i =

1
2p

(
p+1

i

)
. (2.39)

This is called refinement of B-Spline basis functions. With dyadic refinement, any B-Spline
basis function is refined into p+2 finer basis functions (Fig. 2.15). Def. 2 and upper equations
corresponds to dyadic refinement, although refinement can be achieved for arbitrary number of
new knots via knot insertion. It should be noted that Eq. 2.39 is binomial form of knot insertion
when every knot interval in knot vector is bisected. Some authors have formulated refinement
(Eq. 2.38) in matrix form as [43]

Tl = Cl+1Bl+1,

where Cl+1 is subdivision matrix.
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Figure 2.15: Refinement of quadratic B-Spline basis function, according to Def. 2 and Eq.
2.38. B-Spline basis function τ defined on knot vector u = {0,0.333,0.667,1} is shown in

black solid line. With dyadic refinement, new knot vector is obtained
ure f = {0,0.1667,0.333,0.5,0.667,0.833,1} and thus new p+2 refined basis function βre f

(shown in red dashed lines).

Truncation of τ with respect to Bl+1 and Ωl+1 is defined as [40] (Fig. 2.16)

truncl+1
τ = ∑

β∈Bl+1, suppβ⊊Ωl+1

cl+1
β

(τ)β. (2.40)
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Figure 2.16: Truncation of B-Spline basis function shown on Fig. 2.15, according to Eq. 2.40.
If a knot span [0.5,1) in ure f (Fig. 2.15) belongs to a new level subdomain hierarchy Ωl+1

(shown in blue dotted lines), then every refined function βl+1 (red dashed lines) with support
in Ωl+1 is truncated from τ. Finally, black solid line represents truncτ, which is active basis

function in Ωl .

With truncation mechanism applied to HB-Splines, the THB-Splines can be introduced as
[40, 22]
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Definition 3. The truncated hierarchical B-Spline basis T is recursively defined as:

(I) Initialization:
T 0 =H0,

(II) Recursive construction of T l+1 :

T l+1 = T l+1
A ∪T l+1

B , for l = 0, ...,N −2,

where

T l+1
A =

{
truncl+1

τ ∈ T l : supp τ ⊈Ω
l+1
}
,

T l+1
B =

{
β ∈ Bl+1 : supp β ⊆ Ω

l+1
}
=Hl+1

B .

(III) Result:
T = T N−1.

Construction is exact to the construction of HB-Splines (Def. 1), with addition of truncation
mechanism on basis functions βl whose finer basis functions τ have support in Ωl . Truncation
leads to truncated basis truncl+1 τ, whose support is minimally contained in Ωl+1 and thus
preserves the PoU property. For each truncated basis function τ at level l, there exists one
B-Spline basis function βl which satisfies

τ = truncN−1(truncN−2...(truncl+1(β))...), (2.41)

from which B-Spline basis β is denoted as mother of τ (β = mot(τ)) and τ is child of β (τ =

child(β)). Because THB is derived from HB, it inherits some properties and acquires some new
ones, such as (see Fig. 2.17 and Fig. 2.18 for curve and surface, respectively): [40, 35]

(T1) Linear independence: ∑τ∈T dττ = 0 ⇔ cτ = 0, ∀τ ∈ T .

(T2) Non-negativity: ∀τ ∈ T , τ ≥ 0.

(T3) Nested nature of spline spaces: spanT l ⊆ T l+1 for l = 0, ...,N −2.

(T4) spanT is multilevel spline space S (Def. 1), determined by subdomain hierarchy S =

spanH= spanT .

(T5) Truncated hierarchical B-Spline basis T forms PoU: ∑τ∈T l τ = 1 for all l = 0, ...,N −1.

(T6) Truncated hierarchical basis T forms convex PoU on Ω0.
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(a) Subdomain hierarchy with three nested levels (0,1 and 2).
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(b) Level 0: Truncated hierarchical basis T ∩B0.
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(c) Level 1: Truncated hierarchical basis T ∩B1.
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(d) Level 2: Truncated hierarchical basis T ∩B1.
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(e) Resulting truncated hierarchical basis T = T 2 from subdomain hierarchy (Fig. 2.17a).

Figure 2.17: Univariate truncated hierarchical basis of p = 2. For a given subdomain hierarchy
(a), figures (b-d) show active truncated hierarchical basis functions per each level. From these

active functions, final THB is constructed (e).
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(a) Subdomain hierarchy Ω. (b) THB basis T 0 = B0. (c) Subdomain Ω0.

(d) Subdomains Ω0 and Ω1. (e) THB basis T 1
A . (f) THB basis T 1

B .

(g) THB basis T 2
A . (h) THB basis T 2

B . (i) Final THB basis T 3 = T .

Figure 2.18: Bivariate THB space with three levels of refinement, with symbolds from Def. 3.
Subdomain hierarchy (a) is shown throughout THB for every hierarchy level (T l

A ∪T l
B),

starting from initial domain and bases (b-c), through recursive definition for both levels of
refinement (d-h) until final THB space (i) [22].

Similarly like with HB-Spline, authors in [35] also accounted THB-Spline in bases stability
analysis and shown that they are always strongly stable in comparison to HB-Spline. Buffa and
Giannelli [47] introduced new term regarding the refinement of the grid. This so called ad-

missible mesh defines the admissible class of arbitrary element (cell) and defines the bounding
number of active basis functions per that element. It’s connected to the truncation mechanism
and defines that number of non-zero active functions on one element is not a function of number
of the levels, but rather the function of admissible class if the refinement is done in admissible
narrative. It’s a way of gaining more structured refined grid and it can be quite useful in IGA
when dealing with error estimators and convergence. With further analysis of mesh admis-
sibility, Buffa et al. [48] have developed complexity estimation which ensures constant ratio
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between old and refined elements, if the refinement is done in admissible way. Also, this es-
timation parameter can be used as a way to track (or control) mesh refinement in convergence
of IGA. Kiss et al. [49, 22] developed implementation of THB-Spline algorithms for construc-
tion and evaluation of THB-Spline model, along with quad-tree data structure for storing data
required to construct THB-Spline (Fig. 2.19). Quad-tree is similar to the one defined for HB-
Spline (Sec. 2.3.1) but with additional functionalities and queries for THB-Spline definition.
Also, characteristic matrices were introduced to collect information about active or passive
B-Spline basis functions.

(a) First split (left) and its quad-tree representation (right).

(b) Second split (left) and its quad-tree representation (right).

(c) Third split (left) and its quad-tree representation (right).

Figure 2.19: Quad-tree representation of hierarchical domain [49].
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Each node on Fig. 2.19 contains information about cells (or partition) coordinates (upper
left data), corresponding level of the cell (upper right data) and pointers to the four children
cells of current cell (four lower entries in node). Required algorithms and functionalities are
also described in [49, 22] with the use of sparse data structures. Song et al. [50] defined kd-
tree representation of hierarchical domain which does not split parametric domain in four parts
like quad-tree, but rather in half (per u or v axis) and thus creates deeper and narrower tree
representation than quad-tree (Fig. 2.20). Authors compared kd-tree subdivision to standard
quad-tree and octree subdivision, which proved to be more efficient than quad-tree or octree
and that generates less cells.

Figure 2.20: Kd-tree based subdivision, where each level consists of two depths that represent
splitting directions li and cells Ci [50].

2.3.3. T-Splines

Tensor product NURBS or hierarchical spline (HB or THB) is constructed on one rectangular
knot grid or on multiple rectangular knot grids, respectively. With local refinement, standard
rectangular knot grids can get very dense, locally or globally. So in order to manipulate only
desired rows and columns of knots or control points, T-junctions were introduced in by Seder-
berg et al. [51, 52] which allow creation of so called T-mesh from which T-Splines are obtained.
From this perspective, T-mesh is actually rectangular knot grid with T-junctions (Fig.2.21) [51].
Each line in T-mesh is a line segment of constant u or constant v (in some literature it is de-
noted as s and t, i.e. (s, t) parametric domain). Each edge is labeled with a knot interval and
constrained by two rules:

Rule 1. Sum of knot intervals on opposing edges of any face must be equal. E.g. for face F in
Fig. 2.21 must be valid that d2 +d6 = d7 and e6 + e7 = e8 + e9.
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Rule 2. If a two T-junctions on opposite edges can be connected, thus splitting the face into two
faces following the Rule 1, that edge must be included in the T-mesh.

u5u5

u4

u3

u2

u1u1

v1 v2 v3 v4 v5

Figure 2.21: Example of T-mesh in (u,v) parametric domain with control points Pi [51].

To show how the T-spline basis functions are calculated, first the concept of point based splines

(PB-Splines) must be introduced [51]. The control points in PB-Splines posses no topological
relationship with each other.

(vj3,ui2)

(vj2,ui0)

(vj2,ui1)

(vj2,ui2)

(vj2,ui3)

(vj2,ui4)

(vj4,ui2)
(vj1,ui2)(vj0,ui2)

Figure 2.22: Knot lines for PB-Spline basis function Bi, j(u,v) [51].

From Fig. 2.22, basis function Bi, j(u,v) is given as tensor product of cubic univariate basis
functions Bi, j(u,v) = Ni,3(u)N j,3(v). Every univariate basis function is associated with its knot
vector, where Ni,3(u) corresponding knot vector is u = {ui0,ui1,ui2,ui3,ui4} and N j,3(v) knot
vector is v = {vi0,vi1,vi2,vi3,vi4}. This results with equation for a PB-Spline surface

S(u,v) = ∑
n−1
i=0 Bi, j(u,v)Pi

∑
n−1
i=0 Bi, j(u,v)

. (2.42)

In order to specify a PB-Spline, set of control points with its pair of knot vector is required.
PB-Spline satisfies convex hull property. Also, it has no notion of control mesh, knot vector
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of any basis function is independent of any other basis function knot vectors. With the no-
tion of PB-Spline basis function, T-Spline basis function knot vector can be introduced. As
already mentioned, control point Pi and its corresponding basis function Bi, j(u,v) (Eq. 2.42)
are defined on knot vectors u = {ui0,ui1,ui2,ui3,ui4} and v = {vi0,vi1,vi2,vi3,vi4} where the Pi

knot coordinates are (vi2,ui2). If some knots are not visible on T-mesh, they are defined with
a ray in parameter space R(α). So for example, for some defined ui, j, vi j is given as R(α) =

(vi j ±α,ui j) and vice versa. For a P1 from Fig. 2.21, knots are v = {v1,v2,v3,v4,v5 − d8}
and u = {u1 − e0,u1,u2,u3,u4 + e9}, for P2 is v = {v3,v3 + d6,v5 − d8,v5,v5 + d5} and u =

{u1,u2,u3,u4,u5}. For a boundary point P3 knots are v = {v1 −d0,v1 −d0,v1,v2,v2 +d7} and
u = {u1,u5−e4+e9−e7,u5,u5+e5,u5+e5}. With defined knot vectors, T-Spline is evaluated
as PB-Spline with Eq. 2.42, although some authors use weights in T-Spline surface evaluation
like with NURBS [52], thus creating rational blending functions. New control points are in-
serted into T-mesh via knot insertion algorithm (Sec. 2.2.1). While performing knot insertion,
additional rule has to be followed

Rule 3. New control point A can be inserted only if v1 = v2 = v4 = v5 for horizontal edge and
u1 = u2 = u4 = u5 for a vertical edge.

(a) A cannot be inserted. (b) A can be inserted.

Figure 2.23: T-mesh knot insertion [51].

From Rule 3. and Fig. 2.23, new knot can only be inserted on an existing edge, so sometimes
new faces have to be created with new knots. So it is obvious that insertion of a new control
point can sometimes lead to multiple control points insertion in order to follow Rules 1.-3,
where the number of new control points and knots can grow significantly. This problem was
solved by Sederberg et al. in [52] with new local refinement. When inserting one control point
with this local refinement, the number of additional control points can be highly reduced. Cubic
basis functions can be refined as linear combination of m−4 B-Spline basis function, where m

is number of new knots which contains old knots and one new which is to be inserted. Local
refinement must not violate several rules during execution. Using the linear combination of
basis function reduces the number of additional control points for insertion and it’s termination
is guaranteed. It’s worth noting that T-Spline conversion to B-Spline and T-Spline knot removal
is also described in [52], while merging B-Splines into T-Spline is defined in [51]. Sederberg et
al. [52] also introduced three types of T-Splines:

34



• Standard T-Spline: ∑i Bi, j(u,v) = 1, ∀(u,v) ∈ Ω.

• Semi-standard T-Spline: ∑i wi, jBi, j(u,v) = 1, ∀(u,v) ∈ Ω, where not all wi, j = 1.

• Non-standard T-Spline: ∑i wi, jBi, j(u,v) , 1, ∀(u,v) ∈ Ω.

Regarding the problem of merging several NURBS models into single T-Spline, gaps can easily
occur at intersections. This problem was exploited by Sederberg et al. [53] for two trimmed
NURBS merging into one T-Spline. Key part of the algorithm is control points insertion and
T-mesh creation at boundary where the surfaces are to be merged, thus creating C2 continuity
(Fig. 2.24).

(a) Mismatching knots of hand and arm model.

(b) Merge using the algorithm in [51].

(c) Merge using the algorithm in [53].

Figure 2.24: Merging NURBS hand and arm model with NU-NURBS algorithm in [53].

Buffa et al. [54] analyzed linear independence of T-Spline blending functions and proved it
on several considered T-meshes for any odd polynomial degree. It has been shown that T-Spline
blending functions are not always linearly independent and such as, authors gave method for
defining a class of T-Splines blending functions who are linearly independent. Continuing on
that work, Li et al. [55] defined class of T-Splines who are guaranteed to be linearly indepen-
dent. These T-Splines obey several properties, such as non-negativity, convex hull property,
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affine invariance and with some additional condition, PoU is retained. This class of T-Spline
blending functions is called analysis suitable T-Splines because they are well suitable for IGA
implementation, thanks to its properties. Analysis suitable T-Splines are obtained by T-junction
extensions and are defined for cubic blending functions. Scott et al. [56] further developed
local refinement algorithm for analysis suitable T-Splines using the nestedness T-Spline spaces.
Regarding the dimensionality and nesting behavior of T-Spline space, Li and Scott [57] devel-
oped dimension formula for smooth polynomial spaces defined over Bèzier mesh of a T-Spline
and defined nesting properties of T-Spline based on analysis suitable local refinement defined
in [56]. About the T-Spline data structures, Asche and Berkham [58] presented half-edge data
structure model for T-grids based on cell incidence relation, Xiao et al. [59] modeled T-Spline
as object-oriented data and composed it into three layers, thus creating three layer model with
great advantages for data storage, access and operations. Wang et al. [60] proposed half edge
data structure for unstructured T-mesh with corresponding local refinement algorithm.
With the importance of keeping the B-spline properties (non-negativity, PoU, linear indepen-
dence, compact support, etc.) in T-Splines and the usage of T-Spline in IGA and geometric
modelling, Kang et al. [61] developed so called modified T-Splines. Modified T-Splines are
locally refined T-Splines, constructed as linear combination of T-Splines blending functions de-
fined in auxiliary mesh and are similar to THB-Splines. Blending functions are given as linear
combination of the extended vertices, i.e. extensions of T-junctions in T-mesh for corresponding
knot vector (just like extensions in analysis suitable T-splines). Extensions of the these knots
define so called extended mesh T’. Evans et al. [62] introduced hierarchical analysis suitable
T-Splines (HASTS), which are superset of both T-Splines and HB-Splines. With this formu-
lation, complex T-Spline design can be encapsulated in the first hierarchy level, while higher
levels can be used for adaptive multiresolution schemes. It’s worthy noticing that authors in [62]
considered only four-sided domains, while application of so far listed T-Splines and HASTS in
arbitrary topological domains can be achieved with the use od spline forests [63] (Fig. 2.25).

Figure 2.25: T-Spline basis functions and its support. Star denotes center of the basis function,
i.e. basis function anchor [62].

HASTS are analysis suitable T-Splines [55] defined in hierarchical T-Spline space as a finite
sequence of N nested analysis suitable T-Spline spaces. Sequence of N analysis suitable T-
meshes T l ⊆ T l+1, l = 0, ...,N −1 is constructed as follows:
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1. T l+1 is created from T l by subdivision of each cell in Ωl in four congruent cells.

2. Extended T-junctions are inserted into T l+1 until it is analysis suitable

With defined hierarchical T-meshes, HASTS space is constructed by definition [62]:

Definition 4. The hierarchical analysis suitable T-spline basis T is recursively defined as:

(I) Initialization:
T 0 =H0.

(II) Recursive construction of T l+1 :

T l+1 = T l+1
A ∪T l+1

B , for l = 0, ...,N −2,

where

T l+1
A =

{
β ∈ T l : supp τ ⊈Ω

l+1
}
,

T l+1
B =

{
β ∈ Bl+1 : supp β ⊆ Ω

l+1
}
.

(III) Result:
T = T N−1.

HASTS preserve several important properties from analysis suitable T-splines, such as: lin-
ear independence, PoU, non-negativity, affine invariance, convex hull property, locally refin-
able, etc. Bezier extraction can be applied on HASTS, which converts T-spline hierarchy (or
any other spline hierarchy) into single level elements and enables finite element formulation
[62].

(a) Initial mesh T 0. (b) Creation of T l+1 from T l by
subdividing Bèzier elements.

(c) Extended T-junctions until
T l+1 is analysis suitable.

Figure 2.26: Construction of hierarchical analysis suitable T-meshes [62].

More details about T-Spline application in IGA and arbitrary polynomial degree can be
found in [64] and [65], respectively.
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2.3.4. Locally Refined B-Splines

New progressive, adaptively refined space of splines was introduced by Dokken et al. [66] with
local refinement of axes parallel box partitions and box meshes, more known as locally refined

B-splines (LR B-Splines).
First of all, box-mesh (or T-mesh) is defined as partitioning of 2D rectangular domain [u0,un]×
[v0,vn] into smaller rectangles by vertical or horizontal lines. Tensor mesh is a special case
of box-mesh (or vice versa) without T-joints where all horizontal and vertical lines span entire
domain. LR mesh Mn is a box-mesh gained through series of single line insertions {ε}n

i=1

from initial tensor mesh M0, where Mn ⊂ Mn−1 ⊂ ... ⊂ M0 and where every mesh state
Mi+1 = {Mi ∪ εi} is also a box-mesh [67].

(a) Tensor mesh. (b) Box-mesh, not an LR mesh. (c) LR mesh and box-mesh.

(d) Not an LR mesh, nor a
box-mesh.

(e) LR mesh with multiplicities. (f) Alternative representation of
LR with multiplicities.

Figure 2.27: Examples of meshes used in definition of LR-Splines [67].

A box-mesh, tensor mesh or LR mesh with multiplicities is a mesh where each line segment
has corresponding multiplicity integer n, where 0 < n ≤ p and p is polynomial degree. From
Fig. 2.27 can be seen that there is no way to create box-mesh on Fig. 2.27b from single line
insertions starting at tensor mesh (Fig. 2.27a), where every state is also a box-mesh. This is
prerequisite for all LR meshes.
Support of a B-Spline basis function β : R2 → R is given as B(u,v) = β(u)β(v), where knot
vectors are u = [u0, ...,up+1] and v = [v0, ...,vq+1]. Sometimes, weighted B-Spline (or refined)
is used to ensure PoU property (Sec. 2.3.2, Eq. 2.38). A meshline ε is said to traverse support
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of a B-Spline β if [67]:

• horizontal line ε = [u∗0,u
∗
1]× v∗ satisfies u∗0 ≤ u0, up+1 ≤ u∗1 and v0 ≤ v∗ ≤ vq+2

• vertical line ε = [v∗0,v
∗
1]×u∗ satisfies v∗0 ≤ v0, vq+1 ≤ v∗1 and u0 ≤ u∗ ≤ up+2

(a) Line traversing the interior of β.

(b) Line traversing the edge of β. (c) Line neither traversing the interior nor
the edge of β.

Figure 2.28: Examples of meshline ε traversing the support of basis function β [67].

A B-Spline basis function β has minimal support on a LR mesh M if for every horizontal line
ε = [u∗0,u

∗
1]× v∗ or vertical line ε = [v∗0,v

∗
1]× u∗ of multiplicity n that traverses support of β in

M, there is:

• n number of unique i such that vi = v∗ (horizontal ε) or ui = u∗ (vertical ε), if ε traverses
the interior if β

• an i such that vi = v∗ (horizontal ε) or ui = u∗ (vertical ε), if ε traverses the edge of β1

It can be seen on Fig. 2.28 that there is distinction when meshline ε traverses the interior or
the edge of basis function support β. Minimal support ensures that every meshline traversing
the support of B-Spline basis function appears in local knot vector and LR B-Spline ensures
that every line in knot vector appears in LR mesh M (Fig. 2.29). This property of B-Spline
basis functions defined as LR B-Spline basis was established by Dokken et al. [66]. B-Spline
basis function β is called LR B-Spline on mesh M if all knot lines of β are contained in mesh
M and if β has minimal support on M. Also, meshline extension ε on LR-mesh Mn can be
defined as [67]: a new meshline, an elongation of existing meshline, an union (join) of two or
more existing meshlines or an increased multiplicity od existing meshline. New meshlines in
Mn causes that one or more LR B-Splines does not have minimal support on Mn+1.
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(a) LR-mesh M. (b) β defined on knots
[0,2,3,4)× [0,1,2,4) has
minimal support on M.

(c) β defined on knots
[0,2,3,4)× [0,0,1,2) has
minimal support on M.

(d) β defined on knots
[0,0,1,3)× [1,2,4,5) does not have

minimal support on M due to meshline
v = 3.

(e) β defined on knots
[2,3,4,5)× [1,2,4,5) has minimal

support on M, but is not an LR B-Spline
basis on M because two highlighted

lines are missing.

Figure 2.29: Examples of minimal support basis function on LR mesh M [67].

By inserting new meshlines ε, local refinement of LR mesh M is achieved through knot
insertion of new ε. New refined basis function is obtained by Eq. 2.25 (Fig. 2.15 is example
of refined basis function where every initial knot vector is bisected through refinement, or Fig.
2.30 where quadratic basis function is refined by inserting one knot). For univariate case, when
inserting single knot û into knot vector u between knots ui and ui+1, refined basis β is given as
[67]

β(u) = α1β1(u)+α2β2(u),

where

α1 =

1, up ≤ û ≤ up+1,

û−u0
up−u0

, u0 ≤ û ≤ up.

α2 =


up+1−û
up+1−u1

, u1 ≤ û ≤ up+1,

1, u0 ≤ û ≤ u1.

LR mesh is given by successive insertion of new meshlines ε and splitting the box-mesh in two
or by increasing the multiplicity of given meshline [66]. Note that there is no need to keep track
of refinement history, only the current mesh Mn and spline space Sn is of interest. Through
local refinement Pou is preserved and geometric mapping is unchanged. More detailed analysis
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of LR mesh refinement can be found in [66, 67].
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, u = [0, 1/3, 2/3, 1]
1, u1 = [0, 1/3, 1/2, 2/3]
2, u2 = [1/3, 1/2, 2/3, 1]

Figure 2.30: Refinement (or splitting) quadratic B-Spline basis function defined on knot
u = [0,1/3,2/3,1] by inserting knot û = 1/2.

LR-Spline L is a pair (Mn,S) of mesh Mn and set of LR B-Splines S = {βi(u)}m−1
i=0 where

m is the number of B-Splines in the set S. Dokken et al. [66] defined LR-Spline space with stan-
dard B-Spline basis, but refined are mostly used to keep PoU property. LR-Splines properties
are [67]:

(L1) PoU: ∑
m−1
i=0 γiβi = 1

(L2) Nested nature of spline spaces: (Mi+1,Si+1)⊂ (Mi,Si)

(L3) LR-Spline refinement is order independent i.e. resulting mesh is accounted not the order
of the meshline refinements.

(L4) Spline space generally does not form linear independence of LR B-Spline basis functions.

Dokken et al. proposed certain scenarios of LR mesh for achieving linear independence and
gave two alternative sets of B-Spline basis functions (rationally scaled and weighted) to achieve
PoU [66]. Bressan in [68] extended the paper [66] and gave instructions for constructing LR
B-Spline with defined number of overlapping support from which PoU and linear independence
can be achieved. Bracco et al. [69] expanded the construction of LR-Splines through the gen-
eralized B-Splines on prescribed T-mesh, without standard meshline refinement. Generalized
B-Splines on LR mesh preserve major properties such as PoU, local support and linear inde-
pendence. Applications of LR-Splines in IGA for single-patch and multi-patch geometry can

41



be inspected in more detail in [67] and [70], respectively. Zimmermann and Sauer [71] intro-
duced LR NURBS as extension of LR B-Splines. Rational basis functions are used (Eq. 2.18)
which can model complex geometries unlike standard polynomials. Basis properties as local
support, Pou, linear independence and convex hull property are preserved from NURBS and
LR B-Spline theory. Additionally, when performing local refinement in LR NURBS, weights
have to be treated in the same manner as control points, i.e. during the refinement correspond-
ing weights are also refined. Also, Bèzier extraction operator was developed which enables
LR NURBS application in finite elements and IGA. Analogous to that, Chen and Borst [72]
introduced LR T-Splines, which takes advantages of T-Splines together with flexibility of lo-
cal mesh refinement in LR-Splines. First major difference to standard LR B-Splines is input
mesh which is T-mesh, unlike standard tensor product mesh (Fig. 2.27a). Final LR T-mesh is
achieved through described local refinement i.e. new meshlines ε insertion instead of T-mesh
standard refinement with control points. LR T-Splines preserve properties major properties as
PoU, linear independence, nested nature of spline space, which enables their usage in finite el-
ement applications and IGA.
Johannessen et al. analyzed and compared HB-Splines, THB-Splines and LR B-SPlines in [73].
Each spline space, construction, properties and refinement procedure is described and com-
pared, with emphasis on IGA. Authors analyzed sparsity of matrices and conditioning numbers
of each spline for same numerical problems, where they established that exception of PoU in
HB-Splines presents big deficiency in numerical applications and that THB-Splines or LR B-
Splines should be preferred. From this results, it’s logical to conclude that analysis suitable
T-Splines should also be preferred over HB-Splines due to PoU preservation.
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3. Methods for Fitting Standard Parametric Models

Fitting data points with parametric curve or surface is frequent problem in many scientific and
engineering areas, such as computer vision, reverse engineering, CAD, etc. Goal is to minimize
distance (errors) between parametric model and given data points. Data points can be in ordered
or unordered form. Fitting the data points can be done by interpolation or approximation, where
main focus of this paper will be on approximation methods. Fitting is defined as nonlinear
optimization problem, where error or objective function is formulated through distance based

or coordinate based algorithms [74]. Most popular objective function is defined as least squares

error (LSE) minimization, from distance based algorithms, where the distances between data
points and parametric model are squared and added up [75, 76, 77, 78]. In initial form, LSE
equation is function of parameterization coefficients (parametric values of data, knots, weights,
etc.) and control points, which makes problem nonlinear

E(u,Q) =
N

∑
i=1

||C(ui)−Pi||2, (3.1)

where C(ui) is curve/surface value for given parametric value ui, P are data points (mostly from
PC), N is number of data points, u are parameterization coefficients and Q are control points.
Additional formulations of LSE problems and solution methods can be seen in [78], but the one
in Eq. 3.1 is most popular and widely used.
When parameterization values are obtained, LSE problem becomes function of just control
points (E = f (Q)). Hence, LSE minimization problem is reduced to linear LSE minimization
which yields linear system of equations for a curve [76, 77, 78]

Q =
(
AT A

)−1 AT P, (3.2)

and for a surface
Q =

[(
AT A

)−1 AT
]

P
[(

BT B
)−1 BT

]
. (3.3)

where A is (n×N) matrix of n basis (blending) functions Ni,p(u) for N data points and analo-
gously B is (m×N) matrix of m basis functions N j,q(v).
In most cases, fitting problems are occupied with defining optimal parameterization coefficients.
After the coefficients are obtained, problem is then reduced to trivial linear LSE solution. Main
focus of the following chapters will be a way of obtaining parameterization coefficients.
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3.1. Data parameterization

First step when performing fitting procedure is to define parametric values of data points P,
regardless of the chosen parametric curve or surface. Parametric domain is consisted of u axis
and/or v axis, depending if it is a curve or surface. Like already seen in Chapter 2, parametric
models are (mostly) defined between [0,1] so in order to evaluate LSE error (Eq. 3.1) every
data point needs to have corresponding parametric values ui. In earlier works [6, 8, 79] ordered
data sets were parametrized using uniform method (Eq. 3.4a), chord length method (Eq. 3.4b)
or centripetal method (Eq. 3.4c)

ui =
i−1
N −1

, i = 1, ...,N −1. (3.4a)

ui = ui−1 +
||Pi −Pi−1||

∑
N
k=1 ||Pi −Pi−1||

, i = 1, ...,N −1. (3.4b)

ui = ui−1 +

√
||Pi −Pi−1||

∑
N
k=1

√
||Pi −Pi−1||

, i = 1, ...,N −1. (3.4c)

Where u1 = 0 and uN = 1. In the cases of B-Splines or NURBS, parametric values can be
averaged per knot spans where. For unordered data sets, two often ways of parameterization
are through mapping or nonlinear optimization. Similar iterative procedure was developed by
Hoschek [80], where the distance error Di between data point Pi and curve C(ui) was minimized
by projecting Di on C(ui) tangent.
Several mapping or projection techniques were developed over the years, where data points are
mapped into parametric domain. Li et al. [81] introduced harmonic mapping, governed by
Laplace equation with Dirichlet boundary conditions.

∆ f = 0. (3.5)

Equation yields linear system Ku = 0, where internal nodes ui are solved from values of bound-
ary nodes u j. For 3D surface parameterization, problem needs to be solved for u and v axis.
Authors proposed FEM and FDM solutions of given problem for obtaining matrix of coeffi-
cients K. Maillot et al. [82] presented solution of mapping Eq. 3.5 where matrix K is defined
as minimization of deformation energy measured by Green-Lagrange deformation tensor from
theory of elasticity [83]. Floater [84, 85, 86] developed several methods for mapping surface
triangulations into 2D parametric domain, with different methods for obtaining coefficients Ki, j.
When mapping into parametric domain on unit square (or unit line for 2D curves), corner points
are selected and boundary values between corner points are mapped using one of methods in
Eq. 3.4a-3.4c. In [84], Floater proposed uniform, weighted least squares and shape preserving
parametrizations for mapping triangulated surfaces (Fig. 3.1). Afterwards, parameterized data
are interpolated on desired grid from which new surface is created.
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Floater and Reims generalized Floater’s work in [84] and extended parameterization for un-

(a) Salt dome triangulation.
(b) Uniform parameterization of salt dome on

Fig. 3.1a.

(c) Weighted least squares parameterization of
salt dome on Fig. 3.1a.

(d) Shape preserving parameterization of salt
dome on Fig. 3.1a.

Figure 3.1: Examples of proposed parameterizations by Floater [84].

organized points where coefficient Ki, j for each (i, j) point obtained as convex combination of
its neighbouring points [85]. Coefficients Ki, j are evaluated with methods from [84] but with
account of neighbouring points in some arbitrary radius. Floater combined already mentioned
works and developed solution for harmonic mapping where coefficients are obtained by the
Mean Value Theorem for harmonic functions [86]. Ma and Kruth [87] parameterized unorga-
nized data points by projecting surface into base surface, defined as unit square. Projection
is done by minimizing distance between target surface and base surface, where the distance is
expressed by normal vector from base surface to target surface. Harmonic mapping is most pop-
ular choice among mapping algorithms because its based on minimizing distortion in angles or
areas (Dirichlet energy) and can be easily implemented with finite element or finite difference
formulation [88]. Generally, harmonic mapping is not conformal (preservation of angles) but
because it minimizes Dirichlet energy of angles or areas, results are very satisfactory. Mapping
model based on elastic springs was used by Greiner and Hormann [89], where every triangu-
lation edge is modeled as elastic spring. Model is based on elastic spring energy minimization
where every matrix coefficient Ki, j is defined as Ki, j = 1/Li, j for i , j and for i = j Ki, j is eval-
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uated from equation ∑
n
j=0 Ki, j = 0 where n are all neighbouring vertices and Li, j is length of

(i, j) vertex. Kragić et al. [90] developed hybrid mapping method for combining harmonic and
elastic spring mapping

KH = λKS +(1−λ)KM, (3.6)

where λ is blending ratio and KH , KS, KM are coefficient matrices for hybrid, elastic spring
and harmonic mapping, respectively. Lai et al. [91] proposed feature sensitive parameterization
where the parametric data are allocate densely around sharp and complex features of given data.
Data points are mapped into higher dimensional space of Cartesian coordinates and features de-
viation metric. Based on feature metric, data are projected into 2D parametric domain with
clustering sharp points. Gaussian mapping can also be applied for unordered data set [92, 93].
Mapping is done by projecting curvature lines on a unit sphere which is afterwards stretched
to unit square. Then, the parametric values are easily extracted from unit square. Conformal
mapping is concept from complex analysis in which surface is mapped into complex plane with
Riemann mapping theorem. This type of mapping preserves angles. For more details, please
refer to [94, 95].
Jin et al. [96] presented conformal mapping using Euclidean surface Ricci flow [97]. Ricci
flows is generalization of geometry circle packing. Authors presented this method for arbitrary
surface topologies, where problem is solved using discrete Euclidean surface flow. Su et al.
[98, 99] developed projection methods using optimal mass transportation theorem. In [98] they
presented area preserving parameterization for surfaces with multiple boundaries. In first step,
conformal mapping is done using Ricci flow and in second step, area distortion is corrected us-
ing mass transport optimization. In [99], presented volume preserving optimization. Boundary
is mapped using harmonic projection, which is later used to compute volumetric harmonic map.
In final step optimal mass transportation map is solved which gives volume preserving parame-
terization. Procedure is similar to harmonic mapping in a way that problem is reduced to linear
system with different sets of differential equations. Ćurković et al. [100] presented novel pro-
jection od 3D geometry into 2D rectangular parametric domain. First, the boundary is extracted
and four corner points are selected with nodes in between corner points linearly placed. Then
for any interior point T and some arbitrary number of sections, closest distances are calculated
between point T and intersections of defined sections with boundary. For evaluated point, plane
is defined and parametric coordinates of point T are linearly evaluated (Fig. 3.2). Developed
method obtains well structured geometries without wrinkling, but its computationally intensive.
More detailed of existing PC parameterization methods can be seen in review paper by Zhu et
al. [101]. Recently, authors wanted to train Neural Networks (NN) [102] for parameterization
of data points. Scholz and Jüttler [103] trained deep neural network for parameterizing and ap-
proximating polynomial curves with small set of input data. Giannelli et al. [104] implemented
convolutional neural network for predicting coefficients of Floater and Reims parameterization
[85]. Rios et al. [105] also trained neural network for predicting Floaters and Reims param-
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(a) Geometry to be projected. (b) Rectangular projection.

Figure 3.2: Procedure of projection by [100].

eterization, but for several complex combinations of coefficients. From this set of combina-
tions, stochastic gradient descent was applied to find optimal global aprameterization. When
using some of projections (mapping) methods, every parametrized point can be input in fitting
method. In that case, parametrized data are in form of a vector and every point enters linear LSE
fitting. Otherwise, parametric rectangular (or linear) domain can be discretized with arbitrary
grid and using interpolation between grid and data points, parametric matrices can be obtained
and used as input for linear LSE fitting.

3.2. Bèzier model fitting

When parametric values are defined with some method from previous section, next step when
dealing with Bèzier curve fitting problem is solving linear LSE fitting problem. In order to get
better solution, authors defined nonlinear optimization problems for Bèzier model fitting. Most
authors defined data parameterization as first iteration of optimization from which linear LSE
problem is obtained at the end of every iteration. With this formulation, problem is very nonlin-
ear and some of gradient based or metaheuristic methods were used as optimization algorithms.
First nonlinear fitting problems with Bèzier curve or surfaces included parametric data opti-
mization with gradient based methods and linear LSE solution [79, 106]. Initial parametric
values were define from uniform or chord length method (Eq. 3.4a-3.4c). Additionally, Borges
and Pastva [106] added additional functional into LSE equation, which is Jacobian of standard
LSE formulation and used Gauss-Newton method to gain solution. After solving nonlinear
functional, linear system is obtained and solved per every iteration.
Metaheuristic algorithms were also apllied for finding optimal parametric values of data. Igle-
sias, Galvez and et al. applied different metaheuristic algorithms, such as Genetic Algorithm

(GA) [107], Particle Swarm Optimization (PSO) [108], Clonal Selection Algorithm (CSA) [109]
which is method from Artificial Immune Systems (AIS) algorithms, Firefly Algorithm (FA)
[110, 111], Bat Algorithm (BA) [112, 113], Cuckoo Search Algorithm [110] and Functional

Networks [114]. In most cases, metaheurstic approach was applied for data parameterization
and afterwards linear LSE solution is obtained and for some data points and control points were
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variables of optimization. Summary of their work can be seen in Table 3.1. In case of functional

Fitting method Optimization algorithm Strategy Ref.

LSE Genetic algorithm
Control points and parametric value

vectors u (and v) are variables
of optimization (Fig. 3.3).

[115]

LSE Functional network

Parametric coordinates are input data.
Network fits control points with
Bernstein polynomials acting as

constraints.

[115]

LSE Particle swarm optimization
Control points and parametric value

vectors u (and v) are variables
of optimization.

[116]

LSE Clone selection algorithm
Parametric values were gained via CSA,

afterwards standard linear LSE fitting (Fig. 3.5). [117]

LSE Firefly algorithm
Parametric values were gained via FA,
afterwards standard linear LSE fitting. [118]

Root mean
square error

(RMSE)
Cuckoo search

Weighted Bayesian energy functional
with data points, control points and

constraints ino bjective function.
[119]

LSE Bat algorithm
Parametric values were gained via BA,
afterwards standard linear LSE fitting. [120]

Table 3.1: Metaheuristic, nature-inspired optimization approaches for Bèzier curve/surface
fitting by Galvez, Iglesias et al.

networks [115], functional networks were used to fit control points with functional constraints
in form of Bernstein polynomials. Goal was to find surface S(u,v) which satisfies system of
functional equations

S(u,v) =
n

∑
j=0

α j(u) f ∗j (v) =
m

∑
i=0

βi(v) fi(u), (3.7)

where α j(u) and βi(v) are coefficients of linearly independent functions. Taking into account
that desired surface is Bèzier surface, improved functional equation for functional network is

S(u,v) =
m

∑
i=0

n

∑
j=0

Pi, j fi(u) f ∗j (v) = f(u).P(f∗(v))T . (3.8)

LSE function was applied during learning process where each neural function fi was approx-
imated as linear combination of functions {φi0, ...,φim}. In short, for input coordinates from
parametric domain and Bernstein polynomial constraints, network fits Bèziers control points
which results with approximated surface (Fig. 3.4).

48



Figure 3.3: Bèzier surface fitting with GA: bicubic Bèzier surface and data points (left);
evolution of mean errot and Euclidean errors (right-top); optimal parametric values for data

points (right-bottom) [115].

Figure 3.4: Functional constraints i.e. Bernstein polynomials (left, top and middle); data points
parametric coordinates (left-bottom); fitted Bèzier surface (right) [115].

Interesting case is that in [120] bat algorithm optimization was first time applied in context
of geometric modeling.
Pandunata and Shamsuddin [121] used Differential Evolution (DE) [122] (which is a general-
ization of GA) for fitting control points of Bèzier curve with data values defined by chord length
method. Ueda et al. used Simulated Annealing (SA) [123] (probabilistic metaheuristic method)
for fitting piecewise Bèzier curves [124]. Authors used piecewise Bèzier curve for fitting con-
trol points with C1 continuity factors between curves, which were used as additional variables.
Objective function was composed of LSE between curve and data points, fitting curve length
and absolute difference between fitted curve length and data points length, where multi objec-
tive simulated annealing was used as an optimization algorithm.
Analytical optimization can be seen in [125] by Lifton et al., for nonlinear fitting of Bèzier
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Figure 3.5: Archimedean spiral CSA fit: original data points (black symbols +), fitted Bèzier
curve (blue line) and control polygon (red line + symbols *) [117].

surface on unstructured data points. Using fourth degree curve, fitting algorithm can evaluate
complex noisy surfaces to the extent that the surface roughness can be evaluated. Given data
points are uniformly spaced in parametric domain. Then algorithm follows four steps:

1. Linear LSE is used to calculate control points for initial uniform parametric values.

2. Jacobian is evaluated from linear LSE solution, then nonlinear LSE is used to calculate
new parametric values.

3. Linear LSE calculates new control points for new parametric values from 2.

4. 2 and 3 are repeated, until convergence is achieved (relative squared distance between last
two iteration is lesser than tolerance).

Developed algorithm proved to be stable, with smooth convergence (Fig. 3.6).

Figure 3.6: Unstructured data points (coloured dots) and fitted Bèzier surface (left); Top view
of left figure [125].

Some authors presented fitting procedures for generalized Bèzier models. In [126], Iglesias,
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Galvez and Loucera applied similar method like in their already mentioned papers. In this case,
rational Bèzier curve was parametric model with blending functions [126]

Rn
i (u) =

wiBn
i (u)

∑
n
j=0 w jBn

j(u)
, (3.9)

where wi are weights and they make additional degree of freedom in optimization. Authors
used metaheuristic algorithm SA, with two different schemes. Optimization variables were
curve degree n, parametric values ui, weights w j and control points Q j. For a range of degree n,
parametric values and weights were optimized with SA, from where linear LSE solved control
points. Then, using Bayesian information criterion (BIC) [127] objective function, best degree
n is obtained. This optimization problem is highly nonlinear with all variables related to each
other, thus it needed to be decomposed into several subproblems. Experiments showed that
method is suitable for fitting, but it’s performance is affected by noise intensity, meaning that
some filtering operations are advisable before fitting procedure.
Zaman and Chowdhury [128] used DE on optimization of modified Bèzier curves. Modified
Bèzier curves were introduced by Yang and Zeng [129], where curve (or surface) has additional
degree of freedom in form of shape parameter. This parameter is similar to weights in NURBS
(Sec. 2.1.4), but in this case it only affects y coordinate for curves and analogously z for surfaces.
Modifier Bèzier curve is then defined as [128]

x(u) =
n

∑
i=0

(
n
i

)
ui(1−u)n−1Qx,i, (3.10a)

y(u) =
n

∑
i=0

Λiui(1−u)n−1Qy,i, (3.10b)

where Λi are shaping coefficients expressed with shaping parameters ζi as

Λi = ζi

(
n
i

)
, i = 0,1,2, ...,n. (3.11)

Achieving optimum shaping parameters ζi, curve follows control polygon. In this case, LSE is
defined between curve and control polygon. For a discrete set of parametric values u, curve y

values are evaluated with Eq. 3.10b and control polygon values are evaluated with piecewise-
linear interpolation between control points for evaluated x from Eq. 3.10a. LSE between curve
and control polygon slope is also accounted, which yields weighted LSE objective function

E = w1Ec +w2Es = w1

N

∑
i=0

[yc − ycp]
2 +w2

N

∑
i=0

[(
dyc

dx

)
−
(

dycp

dx

)]2

, (3.12)

where N is number of discrete points, yc is Bèzier curve value, ycp is linear interpolation value
of control polygon and w are weight factors. Authors formulated this optimization problem
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with ζi as variables and used DE as optimization algorithm. Results showed that optimization
converged and that optimum curve matches shape and slope of control polygon with much
higher degree of accuracy (Fig. 3.7). Proposed method is general, i.e. can be used on set
of discrete data points where data points are regarded as control points. Ueda et al. [130]

Figure 3.7: Comparison between modified and conventional Bèzier curve: fitted curve (left)
and slope (right) [128].

extended his work from [124]. For a same formulation of the problem, single objective and
multi objective optimization was performed with SA algorithm. Again, curve length error
and LSE were formulated, where in multi objective optimization they were both objective
functions and for single objective optimization they were weighted objective function. Single
objective SA has achieved better approximation due to refinement parameters. Lu et al. [131]
used elitist non-dominated sorting GA (NSGA-II) for fitting generalized cubic developable
Bèzier-like surfaces. This class of Bèzier like surfaces has additional shape parameters λi,
which are variables of optimization. A multi-objective optimization model is developed, based
on shortest arc length, smallest energy and smallest curvature. Four optimization approaches
are established by combining two of three objective criteria and finally combining all three.
NSGA-II proved effective when solving this type of multi objective optimization, but with
increased time complexity. Zain et al. [132] used fractional Bèzier curve as parametric model
when fitting the data, which has two types of parameters: shape and fractional. With fractional
parameters the improved continuity is developed, called fractional continuity. Parametric
values can be chosen arbitrarily, fractional and shape parameters are then easily adjusted, but
with higher computational time due to complex equations.
Regarding the fitting of Bèzier patches, few papers will be mentioned. Vučina et al. [133]
proposed fitting of low degree partial surfaces (patches) with local control and imposed
continuity, called chained piecewise Bèzier surfaces. Fortes and Medina [134] developed fitting
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method for datasets containing a region in which no data is provided ("holes"). C1 quadratic
Bèzier patches were fitted with more emphasis on obtaining global fitting function, rather than
local patches. Missing data are calibrated by several representative curves, which are then
extended over missing data. Cui et al. [135] developed adaptive extension scheme when fitting
Bèzier curve. Small segment of data points is approximated with curve, from where domain
is enlarged and curve is extended up to another optimal data point. Using this scheme, data
points can be fitted with one or several piecewise curves, depending on the data points. Method
showed effectiveness in curve fitting, but with higher fluctuation of data points the number
of curve segments can increase drastically. Utilizing higher curve degree can sometimes
provide feasible approximation. Recently, new research interest has risen with development
of autonomous mobile robotics, where Bèzier parametric model has found its application in
trajectory optimization and path planning [136].

3.3. B-Spline model fitting

When dealing with B-Spline model, additional degree of freedom in terms of knots is in-
cluded (Sec. 2.1.3). B-Spline basis functions aren’t global, i.e. they are defined on knot spans
[ui,ui+p+1) from which they have local support and thus more flexibility. When fitting B-Spline
curve or surface, main problem is definition of the knot vector(s). Data points are in most cases
parametrized with some method from Sec. 3.1 and in order to obtain B-Spline coefficients (con-
trol points) with linear LSE system (Eq. 3.2 and Eq. 3.3), knots position have to be determined.
Main focus of B-Spline fitting are procedures for obtaining optimal knot positions, which will
be discussed in this section.
When fitting B-Spline curve or surface, number of knots is usually predetermined with first
p+1 knots being 0 and last p+1 knots are 1 (Eq. 2.11). With that, internal knots are variables
of nonlinear optimization. Simplest way is that internal knots are defined by uniform, chord
length or centripetal method (Eq. 3.4a-3.4c) [6, 8, 76, 137].
Knots can also be parametrized with methods based on data points values or deviation. Trivial
method is averaging technique [6], where for fixed knot number knots are averaged from data
points. Regarding data deviation, Inverse chord length (ICL) method [138, 93] is used which
achieves high compression ratio by allocating fewer knots to regions with small deviations and
more knots to regions with higher shape deviation, by uniform sampling. Park and Lee [139]
introduced dominant points for knot placement in curve fitting. Data points are parameterized
(chord or centripetal method), from which dominant points are calculated. Their calculation
is based on parametric values deviation, which gives more dominant points around dense and
complex regions and less at flat regions. Finally, dominant points are averaged which yields
knot values. Also, some knots placement techniques are developed like KTP where knots are
spanned in a manner that each knot span contains same number of parametric values. In the
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Figure 3.8: Curve obtained by LSE minimization using dominant points method proposed in
[139]. Dominant points are denoted by ’+’ sign, with knot vector underneath.

framework of optimization, knot placement is nonlinear problem with constraints where knots
should make increasing sequence. Piegl and Tiller developed similar method to KTP called
NKTP [140], with adding flexibility to knots and knot removal algorithm. Initial knots can
freely move and with knot removal, knot vector is reduced to keep distance error within toler-
ance. Resulting knot vector is generalization of averaging technique. Li et al. [141] developed
adaptive knot placement algorithm based on curve’s curvature. Highly noisy data are exposed
with curvature characteristics. Afterwards, they are filtered and new knots are placed to reduce
data noise and density.
Knot insertion technique can also be applied to improve flexibility when fitting B-Spline curve
or a surface [137, 142]. Similarly, knot removal is also applicable, where initial dense knot
vector is reduced [23, 24]. Some authors [143, 144] formulated unconstrained optimizations
from constrained one, with LSE minimization and using gradient based optimization methods
for achieving optimal B-Spline curve. Recently, sparse optimization in knot calculation began
to develop. Kang et al. [145] developed sparse optimization algorithm for knot reduction based
on works [146, 147]. Initially, dense knot vector is provided. From initial vector, subvectors
are defined which reduce problem to sparse fitting. Satisfactory subvectors replace initial knot
spans, and the process is repeated until the knot vector is small enough and approximated curve
error is within error tolerance with initial curve. Occurred problems in algorithm are high time
cost and deficiency in handling data with high noise.
Like with Bèzier model, many authors applied metaheuristic algorithms for defining knot vec-
tor. Some of interesting work has been done by applying GA to B-Spline fitting. Yoshimoto
et al. [148] defined real-coded GA, where every individual in population was defined with real
knot values and with variable size i.e. number of knots. Authors used BIC fitness function
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defined as
BIC = NlogeE +(logeN)(2n+ p), (3.13)

where E is point distance error term of LSE (Eq. 3.1), N is total number of data points, n and p

are number of knots and polynomial degree, respectively. Akaike Information Criterion (AIC)
[149] can also be used as fitness function and is written as

AIC = NlogeE +2(2n+ p). (3.14)

According to [148], AIC gives redundant number of knots while BIC gives adequate number
of knots which makes BIC better choice for fitness function. Parametric values and knot val-
ues can simultaneously be defined as variables of GA optimization [150]. With standard GA
optimization, used fitness function was normalized root mean squared error (non dimensional
form)

f =
∑

N
i=1

√
(C(ui)−Pi)2

|Pmax −Pmin|
, (3.15)

where |Pmax −Pmin| is range of input data points. Kumar et al. [151] used parametric values
as GA optimization variables. Knots are then averaged from resulting parametric values and
finally, linear LSE solution is obtained. Fitness function was defined as maximization problem

f =
1

1+Erms
, (3.16)

where Erms is root mean squared error Erms =
√

∑
N
i=1 e2

i /N with ei being Euclidean error for ev-
ery data point. Garcia-Capulin et al. [152] used hierarchical GA definition for fitting B-Spline.
Main novelty of this approach is hierarchical structure for representation of model structure
(knots and its number) and model parameters (control points), called hierarchical gene rep-
resentation. Bi-objective function was used and written as weighted combination of AIC and
penalty functions for knot structure. As the result, algorithm finds best model with fewest knots,
knots optimal position and optimal control points.
Like with Bèzier metaheuristic fitting, Galvez, Iglesias ad et al. contributed to that topic but
with B-Spline model fitting. Summary of their work can be seen in Table 3.2. Functional
networks are applied in same manner like with Bèzier model, where for parametric input data
and B-Spline basis function act as constraints. The network fits corresponding control points
[153, 154]. Galvez and Iglesias [155] used free knots as variables, where the number of knots
and their values are unknowns. Results can be seen on Fig. 3.9. Also, multiplicity of a knots
k ≥ 1 can be achieved with free knots. Fitting problem with free knots leads to highly con-
tinuous multimodal and multivariate nonlinear optimization. In [156] Galvez, Iglesias et al.
applied iterative procedure with two GA optimization as parts of iteration. GA optimizations
for parametric values and knots, from which LSE system is solved with SVD (singular valued

decomposition) or LU methods (Fig. 3.10). Finally, mean error is evaluated and new iteration
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Fitting method Optimization algorithm Strategy Ref.

LSE Functional network

Parametric coordinates are input data.
Network fits control points with

B-Spline basis functions acting as
constraints.

[153, 154]

LSE
Particle swarm
optimization

Free knots as variables of optimization. [155]

LSE Genetic algorithm

Two steps optimization: (1.) parametric
values for surface parameterization and

(2.) knot values for surface fitting
LSE system is solved using SVD

decomposition. Iterative procedure
until convergence is achieved.

[156]

LSE Firefly algorithm
Knots are variables of optimization, from

which linear LSE is solved. [157]

Table 3.2: Metaheuristic, nature-inspired optimization approaches for B-Spline curve/surface
fitting by Galvez, Iglesias et al.

begins until convergence is achieved. Galvez and Iglesias [157] optimized fixed knots with FA.
They used four different fitness functions, LSE, RMSE, AIC and BIC and analyzed influence
of each one on final result. Also, knots gained with FA were compared to some standard knot
parameteriztion methods (uniform, chord length, ...).

Figure 3.9: Curve obtained by PSO optimization of free knots (right) with AIC and BIC fitness
functions [155].

So far discussed LSE objective function (Eq. 3.1) is also known as point distance error.
LSE objective functions can also be formulated as [158] tangent distance error

ET D =
N

∑
i=1

||(C(ui)−Pi)Ni||2. (3.17)

56



Figure 3.10: Reconstruction of horn surface form point cloud points (up) and (4,4)-order
B-Spline surface [156] .

where Ni is unit normal vector of the fitted curve towards data point. Wang et al. [158] devel-
oped new LSE quadratic objective function called squared distance error

ESD =


d

d −ρ
[(C(ui)−Pi)Ti]

2 +[(C(ui)−Pi)Ni]
2 , if d < 0,

[(C(ui)−Pi)Ni]
2 , if 0 ≥ d < ρ.

(3.18)

where d is closest distance between point Pi and curve point C(ui), ρ is curvature radius of a
curve C(u)i at closest point and Ti is unit tangent vector between curve point and data point.
Squared distance error becomes tangent distance error data point is sufficiently close to curve
point, i.e. when 0 ≥ d < ρ.
LSE objective functions can also be formulated with additional smoothness functional as

f = E +λ fs, (3.19)

where E is arbitrary error distance term, λ positive weight and fs smoothness functional. Weight
λ is usually used as very small positive value. Smoothness functional acts as penalizing factor
for deviating shapes [142]. They have to be defined as quadratic function at control points to
keep system linear. Most commonly used smoothness functional is thin plate energy functional,
involving partial derivatives of a curve or a surface [90, 159]

fs =
∫ ∫ (

||Suu||2 +2||Suv||2 + ||Svv||2
)

dudv, (3.20)
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(a) Iso-values of point distance
error.

(b) Iso-values of tangent
distance error.

(c) Iso-values of squared
distance error.

Figure 3.11: Iso-values of different LSE function formulation [158].

where indices denote partial derivatives of a surface S(u,v). Other functionals, such as exact

thin plate energy which is based on principle curvatures [160] or data dependent thin plate

energy [161] can also be applied for smoothing effect.
Ćurković et al. [162, 163] proposed re-parameterization fitting methods for optimization of
parametric u and v grid data. In [162], grid data matrices were decomposed as

U = Cu +Ku, (3.21a)

V = Cv +Kv, (3.21b)

Initially, matrix K is initialized with input parametric grid data (Fig. 3.12a), u and v respectively.
Rows and columns of the input grid data represent sections of initial geometrical topology. In
first step of optimization, matrix K is optimized with Levenberg-Marquardt gradient method.
Goal of first optimization is to stretch or shorten parametric rows and columns around areas
with significant change of geometry (Fig. 3.12c). In second step, matrix C is initialized with
optimal values from matrix K. Matrix C is optimized with GA using exponential external func-
tional which controls width of the change between pair cu and cv. Goal of second optimization
is to reduce excess points in the areas outside any significant geometric features (Fig. 3.12e).
Global goal of proposed fitting method is to reduce number of parametric values around geo-
metric features. Doing this, number of knot spans is increased around that areas and with them
control points which enables better fitting of features. First gradient optimization changes rows
and columns of parametric grid and second changes every parametric point. Knots number
is fixed and are uniformly distributed. With data re-parameterized and knots defined, surface
is trivially obtained by linear LSE. In [163], Ćurković et al. followed same principle of re-
parameterization, but instead of GA optimization with external functional, eigenvalues from
Principal Component Analysis were applied. Using 2D Gaussian convolution and eigenvalues,
points are redistributed around sharp feature to increase number of control points around fea-
ture. Similarly, Kragić et al. developed adaptive fitting method based on scalar field for point
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(a) Initial U and V parametric grid data. (b) Surface from initial parameterization.

(c) U and V after Levenberg-Marquardt
optimization.

(d) Surface after Levenberg-Marquardt
optimization.

(e) U and V after GA optimization. (f) Surface after GA optimization .

Figure 3.12: Steps of enhanced fitting re-parameterization [162].

cloud re-parameterization which distributes B-Spline coefficients densely around parts with
higher complexity. In [90], relaxation field was applied to input point cloud. Relaxation field
distributes parametric values in such manner that resulting B-Spline control points distribute
densely around complex shapes. Similarly, Kragić and Vučina [164] applied relaxation field
based on plane-stress model which gives similar result like in previous work [90]. Addition-
ally, several convergence criterion were investigated. Ebrahimi and Loghmani [165] developed
adaptive fitting B-Spline method using scaled BFGS method [166]. Initial B-Spline is fitted
with standard LSE system. Afterwards, scaled BFGS is applied on minimizing LSE error with
length parameter. Length parameter scales the problem and keeps number of control points
and precision of initial B-Spline curve. Also, new control points are inserted to increase curve
flexibility and reduce fitting error.

Complex geometries can be fitted as B-Spline patches, enabling more flexibility and preci-
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sion with local surfaces. Curve or surface patches can be stitched with three geometric continu-
ity degrees, G0 called watertight boundary, tangent plane continuity G1 and second derivative
continuity G2 [167]. Milroy et al. [167] developed B-Spline patches fitting with G1 continuity.
Initial single patch B-Spline is fitted and later refined with constrained linear surface fit with G0

continuity.
Q = (AT A)AT (P−Pedge), (3.22)

where Pedge are G0 constraints in linear form. In further optimization, LSE is solved with
Levenberg-Marquardt method where G1 constraints are defined as penalty function. Zhang
et al. [168] presented fitting method for triangle meshes of arbitrary topology. First, data
is parameterized and partitioned is quadrilateral patches. Every quadrilateral patch is fitted
with B-Spline using linear LSE solution. Patches are connected by imposing C0 continuity via
boundary control points.

Recently, authors implemented neural network for fitting B-Spline model. In most papers,
neural networks are trained to predict parametric values and/or knot values. Laube [169] devel-
oped deep learning model for parameterization of data points and knot vector. Two deep neural
networks are developed, one for data parameterization and another for knot placement. In most
cases, authors used different structures of NN for predicting knot positions for achieving best
fit of B-Spline model [170, 171, 172].

3.4. NURBS model fitting

NURBS model is extension of B-Spline model with additional degrees of freedom in form of
weights wi (of wi, j for surface). With already mentioned data parameterization and knot evalua-
tion, weights have to be defined to construct NURBS model with weights being positive which
makes NURBS fitting nonlinear constrained optimization problem. With that, main focus of
currents section will be definition of weights for fitting NURBS model on data points.
Standard NURBS fitting problem would consist of input parameterized data and finding op-
timal knots and weights for such data. This kind of approach defines global nonlinear opti-
mization problem. Knots have to be in increasing order and weights positive, which makes
this constrained optimization. Such approach can be seen in [173], where Lauren-Gengoux and
Mekhilef defined global NURBS fitting problem. Control points, knots and weights were vari-
ables of optimization with already mentioned constraints accounted. Objective function was
standard LSE with knots and weights constraints inserted through penalty method. Problem
was solved with several gradient based methods and results discussed. Detailed approach to
NURBS fitting with gradient methods can be seen in [174].
Standard NURBS fitting procedure is mostly composed of two parts, first one being linear solu-
tion of B-Spline surface and second being optimization of NURBS weights for achieving best
fit. Similar variations can be implemented, such as NURBS linear system define by Ma and
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Kruth [175] 
BT B 0 0 −BT XB

0 BT B 0 −BT YB
0 0 BT B −BT ZB
0 0 0 M




Qx

Qy

Qz

w

= [0] . (3.23)

where B is matrix of basis functions values and X, Y, Z are diagonal matrices od data points
Px, Py and Pz. M is n× n (n is total number of control points for surface) non-negative matrix
M = Mx +My +Mz, where i.e. Mx is defined as

Mx = BT X2B− (BT XB)(BT B)−1(BT XB, (3.24)

My and My are analogously defined, but with Px and Pz points respectively. This linear system
was defined by Ma and Kruth [175], as two-step linear approach. In first step, linear equation
from fourth row of Eq. 3.23 is extracted for weights w and solved with symmetric eigenvalue
decomposition technique. In second step, with weights obtained, control points Q are obtained
from first three equation of system 3.23. In order to find best fit, simple constrained minimiza-
tion problem is solved for finding best positive weights. Similar fitting approach was done by
Heidrich et al. [176]. After fitting initial B-Spline curve, weights are optimized based on dis-
tance error between current (or initial) curve and data points. Wang et al. [177] defined weight
alteration as ∆wi = δ j/αi, j. For some control point Qi, δ j is distance between data point Pj

and curve value C(u j) and αi, j = ∂C(u j)/∂wi. Term for ∆wi was linearized and curve fitting
was solved iteratively until some certain tolerance was satisfied. Dimitrov et al. [178] applied
similar approach to construction of lofted surfaces such as pipes. For certain number of cross
sections, B-Spline curves were fitted. Afterwards, NURBS surface is fitted where weights are
set to be equal to the inverse of smallest geometric distance.
Galvez and Iglesias [179] used PSO for finding NURBS parameters. 3D data points, NURBS
polynomial degree and fixed number of control points were given as input. Variables of opti-
mization were control points, knots and weights. Knots were constrained in [0,1] interval and
weights on [0,2] interval. Linear LSE objective function was defined as

RT q = RT Rp, (3.25)

where R is matrix of rational B-spline basis functions values, q and p vectors of control points
and data points respectively. Linear system in Eq. 3.25 was solved by three different methods:
standard LU decomposition, singular value decomposition (SVD) and modified LU decompo-
sition for sparse problems. Proposed method yields very good results, even with problematic
features (Fig. 3.13) . Ulker [180] used AIS algorithm for fitting NURBS curve. Knots, weights
and control points were variables of optimization. Two step non-deterministic approach was ap-
plied. First, knot vector was optimized with respect to standard LSE, from which control points
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(a) NURBS fitting Klein cycloid surface. (b) NURBS fitting tranguloid trefoil.

Figure 3.13: Surfaces obtained with PSO fitting [179].

were obtained. Secondly, weights were identified using AIS objective function. Exact approach
also be applied to surface fitting problems. Costa et al. [181] proposed hybrid optimization
procedure for NURBS framework. Number of parameters, i.e. number of control points, knots
and polynomial degree were used as discrete (integer) variables. Non-decreasing knot values,
control points and weights were defined as continuous parameters, which size is dependent on
discrete variables. Data points were parameterized using chord length method. One iteration of
hybrid optimization was composed of discrete variable optimization with GA and definition of
continuous variables, specifically knots and weights with gradient based method. With param-
eters defined, control points are obtained form linear LSE. Goal of the hybrid optimization was
to define given data points with minimal number of parameters.

Park et al. [182] proposed methods on fitting NURBS patches for triangulated mesh. Data
points are segmented using K-means clustering algorithm. Every patch is approximated by
polyhedron which is triangulated. NURBS network patch is created and every patch is fitted
with G1 (tangent plane) and C2 (curvature) continuity.

Figure 3.14: RBNN architecture [183].
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Neural network can also be applied in NURBS fitting process. They are usually deployed
for predicting weights and control points. Elmidany et al. [183] used Rational B-Spline Neu-

ral Network (RBNN), which contain B-Spline basis functions as one layer of functions inside
network due to their higher approximation ability. Parametrized data points are input values
and without the need for knot optimization, RBNN approximates surface weights and control
points (Fig. 3.14). Network has two inputs: u and v parametric grid points and three outputs: x,
y and z grid control points. Network consists of five layers. All activation functions are linear
except first one which has B-Spline basis function. Connecting weights between second and
third layer represent NURBS weights wi, j. Similar approach in construction of NURBS surface
using RBNN can be seen in [184]. Tian et al. [185] proposed three layer NN which predicts
knot vectors for NURBS surface. Weights are obtained as weights between layers.

63



4. Methods for Fitting Advanced Parametric Models

For some complex geometries, standard parametric models are not sufficient as fitted parametric
model. In order to better approximate local complex features, adaptive parametric models are
used lately. Adaptive models as THB-Spline, T-Spline provide local refinement and addition
of control parameters in parts of domain where geometric error exceeds given tolerance. This
adaptive fitting process is done in several iterations until the tolerance is satisfied or geometric
error converges. Adaptive fitting, independent of chosen parametric model, starts with initial
simple curve or surface which is iteratively refined in domain where error is exceeded. Fitting
is usually done by LSE formulation or usinq Quasi-Interpolation (QI) [21, 186]. QI is local ap-
proximation scheme for defining polynomial coefficients (control points) in prescribed polyno-
mial space. In general, adaptive fitting results with smaller number of parameters (coefficients)
than alternative standard parametric patches or models with dense coefficients. In this chapter,
adaptive fitting procedures regarding HB-Spline, THB-Spline, T-Splines and LR-Splines will
be discussed.

4.1. Hierachical B-Spline and Truncated Hierachical B-Spline model fitting

After introducing hierarchical B-Spline tensor product structure, Forsey and Bartels [187] pre-
sented local LSE approximation of gridded data. New levels are refined with dyadic knots and
afterwards LSE linear system is obtained for new level. Following this work, Greiner and Hor-
mann [89] proposed approximating method of scattered 3D data. Initial B-Spline is defined
from parameterized data and uniform knots. Linear system is obtained with standard LSE and
smoothness functional (Eq. 3.19). Any geometric constraints are solved through Lagrange
multipliers λi. Afterwards, penalty method is applied and linear system is obtained

(
A+ωBT B

)
q = p, (4.1)

where A is square matrix M×M with M being number of basis functions, ω penalty parameter,
B is N ×M with N being number of data points and P is vector of data points. With every
iteration, critical parts of domain are dyadic refined and new system is obtained until the geo-
metric error for every point is below given tolerance. Lee et al. [188] and Zhang et al. [189]
proposed similar multilevel cubic B-Spline fitting methods for ensuring C2 continuity. Subdo-
mains with higher errors are recursively refined using defined through control lattice. Cartesian
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z axis is referent for error determination, hence refined subdomain is expressed as bicubic B-
Spline surface zc = ∑

3
i=0 ∑

3
j=0 Bi(u)B j(v)Qi, j, for any point (xc,yc). In LSE sense, new control

point are evaluated as Qi j = Bi(u)B j(v)zc/∑
3
k=0 ∑

3
l=0 Bk(u)Bl(v). For any point c new Qi, j or

Qc will be obtained. Goal is to minimize error between new hierarchical B-Splines surface and
z coordinates, hence new hierarchical level is expressed as

Qi, j =
∑c Bc(u)Bc(v)Qc

∑c Bc(u)Bc(v)
. (4.2)

C2 continuity is insured by expanding new subdomain by three rows or three columns which
are called constrained strips (Fig. 4.1).

Figure 4.1: Overlapping between subdomain and parent domain for ensuring C2 continuity
[189].

Standard LSE fitting using adaptive hierarchical refinement was proposed Giannelli, Kiss
et al. [40, 190, 49, 22]. Giannelli et al. [40] defined standard THB fitting with LSE function

∑
N
i=1( fi − pi)

2 where fi is THB-Spline model ∑τ∈T cττ (cτ are THB-Spline coefficients, i.e.
control points denoted in [40]). Initial tensor product B0 is defined and LSE error is evalu-
ated. Parts od domain where error is greater than some arbitrary tolerance is refined and new
THB-Spline basis is obtained. Procedure is repeated for some number of iterations or until the
tolerance is satisfied. Kiss et al. [190, 22, 49] followed same procedure, but with additional
smoothness term in LSE formulation resulting with sparse linear system

(
AT A+λE

)
q = AT p, (4.3)

where A is matrix of THB-Spline basis functions, E is smoothness matrix. Result of [49] can
be seen on Fig. 4.2. QI schemes have been highly used and developed in local adaptive fitting
of hierarchical spaces. Kraft [33] discussed QI for computing B-Spline coefficients as weighted
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(a) Turbine blade fillet represented by
THB-Spline.

(b) Detail of turbine blade filler from left
figure.

Figure 4.2: Turbine blade fillet THB-Spline representation. Different mesh colors represent
different hierarchy level [49].

average of a function values. For any (sub)domain Ωl , general QI has the form

PP f = ∑
k
(Pp

k f )Bp
k , (4.4)

where Pp
k are linear functionals. Krafts proposed QI results only with few B-Spline coeffi-

cients for any given level. Speleers and Manni [191] presented QI for THB-Spline projectors
for any polynomial degree p. In order to construct new hierarchical space SΩ, corresponding
coefficients λi,l (control points) have to be determined using QI definition

Q( f ) =
N−1

∑
l=0

∑
i∈Il

λi,l( f )Bτ

i,l,ΩN
, (4.5)

where N is number of hierarchical levels in this context, Il is sed of active basis functions at level
l and Ω is hierarchical level domain. Afterwards, Speleers [186] presented new QI schemes for
uniform hierarchical meshes with fewer evaluations, O(1) complexity per degree of freedom.
Buffa and Garau [193] extended QI projector for hierarchical spaces by enabling construction
of open knot vectors with higher multiplicity of internal knots. QI can be also combined with
LSE evaluation for fitting hierarchical surfaces. Bracco et al. [194] used LSE approximations
and combined it with QI for fitting scattered 3D data. Critical subdomains are extracted via LSE
and local refinement is done by QI scheme. Bracco et al. [192] presented similar combination
of LSE combined with QI. In first stage, linear LSE solution is obtained. In second stage, QI
is used for obtaining THB-Spline definition. Results of LSE+QI combined fitting can be seen
on Fig. 4.3. More detailed analysis of given approach can be seen in [195]. Giust et al. [196]
similarly proposed QI scheme based on LSE fitting for two new spline projectors, one for HB
and other for THB. Local LSE fitting solution was obtained using spline projectors.
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Figure 4.3: Scattered data of critical turbine blade airfoil part (top), reconstructed surface and
corresponding hierarchical mesh [192].

4.2. T-Spline model fitting

In the first paper regarding T-Spline fitting, Zheng and et al. [197] proposed LSE formulation
for grid data, where initial B-Spline surface is adaptively refined, thus creating T-mesh. Fitting
model was semi-standard T-Spline (Sec. 2.3.3) which equations is

S(u,v) = ∑
n−1
i=0 wiBi, j(u,v)Qi

∑
n−1
i=0 wiBi, j(u,v)

, (4.6)

LSE is formulated with thin plate energy

E = ∑
i=1

∑
j=1

(S(u,v)− zi, j)
2 +λ fs. (4.7)

Starting surface is cubic B-Spline, which mesh is later adaptively refined into T-mesh. T-mesh
is achieved by splitting regions with higher geometric error via local knot insertion algorithm.
Results of proposed optimization are on Fig. 4.4 and region splitting per iterations can be seen
on Fig. 4.5. Same principle was applied by Wang and Zheng [198] for PC data. Input PC is
parameterized on unit square using mean value coordinates method [86]. Starting from simple
T-Spline grid, points with highest error are refined and T-mesh is created for semi-standard
T-Spline (Fig. 4.6). Same authors proposed new adaptive T-Spline fitting algorithm [199]
based on their previous work. Novelty of this paper in comparison to previous one ([198]) is
error estimation. For every parameterized vertex of data point pi discrete mean curvature hi is
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(a) Input data. (b) T-mesh. (c) T-Spline surface.

Figure 4.4: Input data, T-mesh and T-Spline surface obtained by fitting method in [197].

(a) Iteration=1. (b) Iteration=2.

(c) Iteration=3. (d) Iteration=4.

(e) Iteration=5. (f) Iteration=6.

(g) Iteration=7. (h) Iteration=8.

Figure 4.5: Fitting iterations of problem on Fig. 4.4 [197].
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evaluated as
hi = ||1/(4A) ∑

j=1
(cotα j + cotβ j)(p j − pi)||, (4.8)

where A is the sum of triangle areas adjacent to the vertex pi, αi and β j are two angles opposite

Figure 4.6: PC Triangulation, mean value coordinate projection, T-mesh, T-Sline surface [198].

to the edge connecting pi and p j (Fig. 4.7). Curvature guidance factor ki is evaluated as

Figure 4.7: Neighborhood of vertex pi [199].

ki = max(
hmax −hi

hmax −hmin
,η), (4.9)

where hi = log(hi + 1) is logarithm of the mean curvature, hmax and hmin are maximum and
minimum value of hi and η is small threshold filter value. Points with higher ki are extracted
and those regions are refined by splitting them with new knots. Lin and Zhang [200] proposed
progressive fitting method for large data sets. Fitting of data starts with initial cubic B-Spline
patch. Then progressive fitting algorithm is applied for finding regions with higher error where
new knots are inserted. Progressive fitting algorithm evaluates difference between T-Spline and
data points. Lu et al. [201] proposed fast T-Spline fitting procedure base on work by Wang and
Zheng. With every iteration, domain is divided in active and nonactive parts. Nonactive parts
have satisfying error while active parts need to be refined. Therefore, algorithm only refines
active parts with every iteration which reduces computational time. Three layer grid is defined
for active parts which encompasses active mesh and parts of mesh which are influenced by
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active mesh. This structure preserves refinement changes only in active parts of domain.
Wang et al. [202] proposed method for converting any quadrilateral mesh into T-Spline surface
with C2 continuity. In topology stage, T-mesh is generated from input mesh. In geometry stage,
T-Spline surface is fitted from defined T-mesh.

4.3. LR B-Splines fitting

LR B-Splines fitting can be implemented in same manner as (T)HB-Splines or T-Splines, where
initial mesh is iteratively refined until certain tolerance is achieved. Skytt et al. [203] proposed
similar method, where initial LR B-Spline surface is iteratively refined in regions where distance
between the points and the surface is not within prescribed tolerance. Approximation of PC with
LR B-Spline is done in two ways: LSE with smoothing and multilevel B-Spline.
LSE global function is defined as

E = α1

N

∑
i=1

(Fi(u,v)− zi)
2 +α2 fs(F). (4.10)

Smoothing term is given as

fs(F) =
∫ ∫

Ω

∫
π

0

3

∑
i=1

wi

(
∂iF(u0 + rcosφ,v0 + rsinφ)

∂ri

∣∣∣∣∣
r=0

)
dφdu0dv0. (4.11)

Smoothing term approximates minimization of surface area, curvature and variation in curva-
ture. Integration of given smoothing term is calculated by Gauss quadrature. Linear system
is obtained and solved with conjugate gradient method. Let pc = (cx,yc,zc), c = 1, ...,C be
points in the support of any given B-Spline basis function. Using multilevel B-Spline local
approximation, control point of given B-Spline basis function is evaluated as

Qi =
∑c(siNi(xc,yc))

2φc

∑c(siNi(xc,yc))2 , (4.12)

where si is scaling factor, Ni(xc,yc) is basis function value for every c point and φc is evaluated
for every data point as

φc =
siNi(xc,yc)zc

∑l slNl(xc,yc)2 . (4.13)

The LR multilevel B-Spline approximation is local and has no effect outside support of given
basis function. During fitting iterations, regions with higher error are split by inserting knot
lines in selected direction where elements are split in the middle. Results of their work can be
seen on Fig. 4.8. Skytt et al. [204] applied same fitting principle as above, but in this case
for bathymetry data of obtained by sonar technologies. In this paper they added deconfliction

filter, for cleaning generated LR B-Spline surface in case of overfitting. Kermarrec et al. [205]
also applied LSE and LR multilevel B-Spline approximation method presented in this section
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for fitting coastal regions obtained by Terrestrial Laser Scanner. More detailed description of
fitting geographical data with LR B-Splines can be seen in [206].

(a) LR B-Spline mesh of Værøy island PC.

(b) LR B-Spline approximation of Værøy
island using LR multilevel B-Spline

approximation.
(c) LR B-Spline approximation of Værøy

island using LSE approximation.

Figure 4.8: Results of fitting Værøy island PC (Værøy is an island in the Lofoten archipelago
in Norway) [203].
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5. Conclusion

The scope of this study deals with geometric parameterization and shape synthesis of data for
CAD, CAM or CAE applications. Initial data is usually obtained by scanning technologies and
are in need of exact shape paremeterization. These sets of data, notably in form of a PC can be
enormous (depending on geometry complexity) and contain coordinate points without any rele-
vant functionality. In order to gain any "sense" from these data sets, geometric parameterization
is needed. When parameterized model is established, further modifications, numerical analysis
or enhancements can be relatively easily applied in comparison to initial PC data set. This study
presents models that can be used for parameterization along with numerical and optimization
procedures required to achieve appropriate parametric model from initial PC.
Most notable CAD parametric curves and surfaces or models are described in this study. Stan-
dard models like Bèzier, B-Spline and NURBS are provide along with their properties. Starting
from initial, global Bèziers model, B-Spline is general improvement of Bèzier in the sense of
more local manipulation and the same goes for NURBS with their weights which can highlight
desired areas. Fundamental geometric algorithms are also defined which are used for manip-
ulating named models. Advanced, adaptive parametric models like (T)HB-Splines, T-Spline
and LR B-Spline are also presented. They are derived from standard models like B-Spline and
NURBS and they enable additional manipulation of given geometric topology through adaptive
refinement of model shape parameters. Dozens more models can be found in literature, but
these present CAD standards are most used ones for geometric parameterization or numerical
analysis. Methods of obtaining representative parametric model from initial PC are defined and
explained through fitting process. Before conducting steps of fitting, PC data have to be pa-
rameterized, usually on unit line [0,1] or unit square [0,1]× [0,1]. This study presents methods
for parameterization of input data as the first step of fitting process. Fitting is usually obtained
with linear LSE system, but before establishing linear LSE system, certain optimization steps
are required. This paper describes optimization methods required for evaluating parameters of
every model and achieving solution with LSE. In some cases fitting is done without solving
linear system, which is also mentioned throughout this paper.
This paper presents parametric curves and surfaces and optimization methods required to define
CAD model via reverse engineering process. CAD representation of given topology is mostly
first step of any CAD, CAM or CAE software, but as it can be seen it requires large number of
complex and computationally expensive numerical and optimization algorithm "just" to obtain
proper physical model.
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2D Two Dimensional
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PC Point Cloud
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MBD Multi-Body Dynamics
PC Computational Fluid Dynamics
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LR Locally Refined
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Abstract

Geometric parameterization and shape synthesis is a crucial process in establishing an ap-
propriate physical model for applications in CAD, CAM, or CAE tools. With increasingly
complex engineering objects, the process of reverse engineering itself becomes more demand-
ing and complex. The point cloud of a given object can contain a very large set of points that
need to be parameterized with an appropriate mathematical model. Due to their robustness
and wide applicability, parametric curves and surfaces i.e., parametric models such as B-Spline
and NURBS present themselves as very useful tools in geometry parameterization. This pa-
per presents and mathematically describes the most commonly used standard parametric curves
and surfaces applied in engineering analyses, and their role in the process of geometric parame-
terization and shape synthesis. Appropriate optimization algorithms and numerical procedures
used in establishing a suitable model are also described. With growing demands for fast and
precise geometry approximation, adaptive parametric models have been developed that achieve
local improvements of the selected model and accelerate the parameterization process itself.
Such parametric models as T-Spline and THB-Spline are also presented in this paper, as well
as optimization procedures used in establishing such parametric model. The aim of this paper
is to present complex mathematical parametric curves and surfaces and the corresponding pa-
rameterization and optimization procedures with the goal of establishing an appropriate CAD
model, which is as exact as possible to the original topology and thus can find its application in
further numerical tools and analyses.
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Sažetak

Geometrijska parametrizacija i sinteza oblika ključan je postupak prilikom uspostave prim-
jerenog fizičkog modela za primjene u CAD, CAM ili CAE alatima. Sa sve kompleksnijim
inženjerskim objektima, sam postupak reverzibilnog inženjerstva postaje zahtjevniji i komplek-
sniji. Oblak točaka danog objekta može sadržavati jako veliki skup točaka koje je potrebno
parametrizirati s primjerenim matematičkim modelom. Zbog svoje robusnosti i velike prim-
jenjivosti, parametarske krivulje i plohe tj., parametarski modeli kao što su B-Spline i NURBS
predstavljaju se kao vrlo koristan alat prilikom parametrizacije geometrije. U radu su predstavl-
jene i matematički opisane najkorištenije, standardne parametarske krivulje i plohe primijenjene
u inženjerskim analizama, te njihova uloga prilikom postupka geometrijske parametrizacije i
sinteze oblika. Odgovarajući algoritmi optimizacije i numerički postupci korišteni prilikom
uspostave odgovarajućeg modela takod̄er su opisani. S rastućim zahtjevima za brzu i pre-
ciznu aproksimaciju geometrije razvijeni su i adaptivni parametarski modeli koji postižu lokalna
poboljšanja odabranog modela i ubrzavaju sam postupak parametrizacije. Takvi parametarski
modeli kao što su T-Spline i THB-Spline takod̄er su predstavljeni u ovom radu, kao i opti-
mizacijski postupci koji se koriste prilikom uspostave takvog parametarskog modela. Cilj ovoga
rada je prikazati složene matematičke parametarske krivulje i plohe te odgovarajuće postupke
parametrizacije i optimizacije s ciljem uspostave primjerenog CAD modela, koji je što više
egzaktan izvornoj topologiji i time može naći svoju primjenu u daljnjim numeričkim alatima i
analizama.
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